

Optimizing Edge and Fog

Computing Applications with AI and

Metaheuristic Algorithms

Fog and edge computing are two paradigms that have

emerged to address the challenges associated with

processing and managing data in the era of the Internet of

Things (IoT). Both models involve moving computation and

data storage closer to the source of data generation, but

they have subtle differences in their architectures and

scopes. These differences are one of the subjects covered in

Optimizing Edge and Fog Computing Applications with AI

and Metaheuristic Algorithms. Other subjects covered in the

book include:

Designing machine learning (ML) algorithms that are

aware of the resource constraints at the edge and fog

layers ensures efficient use of computational resources

Resource-aware models using ML and deep leaning

models that can adapt their complexity based on

available resources and balancing the load, allowing for

better scalability

Implementing secure ML algorithms and models to

prevent adversarial attacks and ensure data privacy

Securing the communication channels between edge

devices, fog nodes, and the cloud to protect model

updates and inferences

Kubernetes container orchestration for fog computing

Federated learning that enables model training across

multiple edge devices without the need to share raw

data

The book discusses how resource optimization in fog and

edge computing is crucial for achieving efficient and

effective processing of data close to the source. It explains

how both fog and edge computing aim to enhance system

performance, reduce latency, and improve overall resource

utilization. It examines the combination of intelligent

algorithms, effective communication protocols, and dynamic

management strategies required to adapt to changing

conditions and workload demands. The book explains how

security in fog and edge computing requires a combination

of technological measures, advanced techniques, user

awareness, and organizational policies to effectively protect

data and systems from evolving security threats. Finally, it

looks forward with coverage of ongoing research and

development, which are essential for refining optimization

techniques and ensuring the scalability and sustainability of

fog and edge computing environments.

Madhusudhan H S is an associate professor in the

Department of Computer Science and Engineering at

Vidyavardhaka College of Engineering, Mysuru, India.

Punit Gupta is an associate professor in the Department of

Computer and Communication Engineering at Pandit

Deendayal Energy University, Gujarat, India.

Dinesh Kumar Saini is a full professor at the School of

Computing and Information Technology, Manipal University,

Jaipur, India.

Optimizing Edge and Fog

Computing Applications with AI

and Metaheuristic Algorithms

Edited by

Madhusudhan H S, Punit Gupta, and

Dinesh Kumar Saini

https://www.routledge.com/go/crc-press

Designed cover image: Shutterstock

First edition published [2026]

by CRC Press

2385 NW Executive Center Drive, Suite 320, Boca Raton FL

33431

and by CRC Press

4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2026 selection and editorial matter, Madhusudhan H S,

Punit Gupta, and Dinesh Kumar Saini; individual chapters,

the contributors

Reasonable efforts have been made to publish reliable data

and information, but the author and publisher cannot

assume responsibility for the validity of all materials or the

consequences of their use. The authors and publishers have

attempted to trace the copyright holders of all material

reproduced in this publication and apologize to copyright

holders if permission to publish in this form has not been

obtained. If any copyright material has not been

acknowledged please write and let us know so we may

rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of

this book may be reprinted, reproduced, transmitted, or

utilized in any form by any electronic, mechanical, or other

means, now known or hereafter invented, including

photocopying, microfilming, and recording, or in any

information storage or retrieval system, without written

permission from the publishers.

For permission to photocopy or use material electronically

from this work, access www.copyright.com or contact the

Copyright Clearance Center, Inc. (CCC), 222 Rosewood

Drive, Danvers, MA 01923, 978-750-8400. For works that

are not available on CCC please contact

mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be

trademarks or registered trademarks and are used only for

identification and explanation without intent to infringe.

ISBN: 9781041003540 (hbk)

ISBN: 9781041005001 (pbk)

ISBN: 9781003610168 (ebk)

DOI: 10.1201/9781003610168

Typeset in Adobe Garamond

by Newgen Publishing UK

https://www.copyright.com/
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003610168

1

2

3

4

5

6

Contents

Editors

Contributors

Introduction to Resource Optimization in Fog and

Edge Computing

PRATIK GUPTA AND PRATEEK KUMAR SONI

Artificial Intelligence Inspired Scheduling in Edge

Computing

KAVITHA D. N., GAYANA J. KUMAR, AND

VEDAVATHI N.

Supervised Machine Learning for Load Balancing

in Fog Environments

PRIYANSHI MISHRA AND YASH JAIN

Blockchain-Based Secure Data Sharing System in

Fog–Edge System

HARSHITHA KAMAL KANNAN

Securing IoT System Using ML Models

ARBAZ ADIB DALWAI, SHIVANI JASWAL, AND

ROHIT VERMA

Federated Machine Learning Algorithm

Aggregation Strategy for Collaborative

Predictive Maintenance

7

8

 9

10

11

BHAVNA SAINI, VIVEK KUMAR VERMA, BHARAT

SINGH, AND NIDHI KUSHWAHA

Advance Machine Learning Algorithm

Aggregation Strategy for Decentralized

Collaborative Models

NAYANA SINGH AND PRATEEK KUMAR SONI

Artificial Intelligence and Machine Learning-

Based Predictive Maintenance in Fog and Edge

Computing Environment

SAHIL RAJ, PRADEEP KUMAR RAWAT, AND

ANIRUDH NEGI

Deep Reinforcement Learning-Based Task

Scheduling in Edge Computing

SHRISTI SONAM, PRATIK GUPTA, AND SAANCH

SAPRA

Secure, Adaptable, and Collaborative AI:

Federated Machine Learning Enhanced with

Meta-Learning and Differential Privacy

DEEPTI BHAT, ANSH CHAUHAN, CHIRANTH

NAGAPRASANNA, CHIRASHWI S., AND SWATHI B.

H.

EP-MPCHS: Edge Server-Based Cloudlet

Offloading Using Multi-Core and Parallel Heap

Structures

RAJKUMAR NAGULSAMY, MANISHA GUPTA, AND

PUNIT GUPTA

Index

Editors

Madhusudhan H S is an associate professor in the

Department of Computer Science and Engineering at

Vidyavardhaka College of Engineering, Mysuru, Karnataka,

India. He has published research articles in reputed

international journals and conferences including SCI-

indexed and Scopus-indexed journals. His areas of interest

include cloud computing, artificial intelligence, machine

learning and computer networks. He holds a doctoral degree

from Visvesvaraya Technological University (VTU), Belagavi,

Karnataka, India.

Punit Gupta is an assistant professor in the Department of

Computer Science and Engineering at Pandit Deendayal

Energy University. He has completed post-doctoral research

at University College Dublin, Ireland. He has completed his

PhD in Computer Science and Engineering from Jaypee

University of Information Technology, Solan, India. He is

Gold Medalist in M-Tech from Jaypee Institute of Information

Technology. He has research experience in Internet-of-

Things, cloud computing, and distributed algorithms and has

authored more than 80 research papers in reputed journals

and international conferences. He is gest editor of Recent

Patent on Computer Science journal and editorial manager

of Computer Standards & Interfaces and Journal of Network

and Computer Applications.

Dinesh Kumar Saini has a PhD in Computer Science, an

ME in Software Systems, and an MSc in Technology from one

of the premier universities in India, BITS Pilani, Rajasthan,

India. Dr. Dinesh Kumar Saini is a full professor in the

Department of Computer and Communication Engineering,

School of Computing and Information Technology, Manipal

University, Jaipur, India. Dr. Dinesh Kumar has vast

experience in academics—as a professor, researcher, and

administrator—in Indian universities like BITS Pilani and

abroad and proven record of accomplishment of leadership

skills in higher education and tertiary education sector. He

served as dean of the Faculty of Computing and Information

Technology at Sohar University in Sultanate of Oman. He

has been an associate professor at Sohar University, Oman,

since 2008, and an adjunct associate and research fellow at

the University of Queensland, Brisbane, Australia, between

2010 and 2015. He has also been the founder program

coordinator and head of the Department of Business

Information Technology for more than 10 years. He won

Emerald Literati Award for 2018 for his article “Modeling

human factors influencing herding during evacuation”

published in International Journal of Pervasive Computing

and Communications. Besides his academic credentials

aptly measured by different quantifiable metrics (e.g.,

ResearchGate score 36.36, Google citation count 1858, H-

Index: 19 and i10 Index: 42), Dr. Dinesh Kumar believes in

the spirit of teamwork and therefore has constantly

augmented and consolidated research capacity building at

the faculty by encouraging and supporting his fellow

colleagues and junior faculty members to publish in journals

and participate in conferences. This is evident in several

publications that have been done in collaboration with his

teammates in the faculty. He has visited the USA, the UK,

France, Germany, Austria, UAE, Australia, Russia, Bahrain,

and KSA for academic purpose and learned a lot of good

practices in the universities of these developed countries.

Contributors

Swathi B. H.

Department of Computer Science and Engineering

Vidyavardhaka College of Engineering

Mysore, Karnataka, India

Deepti Bhat

Department of Computer Science and Engineering

Vidyavardhaka College of Engineering

Mysore, Karnataka, India

Ansh Chauhan

Department of Computer Science and Engineering

Vidyavardhaka College of Engineering

Mysore, Karnataka, India

Kavitha D. N.

Department of Computer Science and Engineering

Vidyavardhaka College of Engineering

Mysore, Karnataka, India

Arbaz Adib Dalwai

School of Computing

National College of Ireland

Dublin, Ireland

Manisha Gupta

Rajasthan College of Engineering for Women

Jaipur, Rajasthan, India

Pratik Gupta

Jaypee University of Engineering and Technology

Guna, Raghogarh-Vijaypur

Madhya Pradesh, India

Punit Gupta

Department of computer science

Pandit Deendayal Energy University,

Gandhinagar, India

and

School of Computing,

National College of Ireland

Dublin, Ireland

Yash Jain

Department of Computer Science and Engineering

Jaypee University of Engineering and Technology

Guna University

Raghogarh-Vijaypur, Madhya Pradesh, India

Shivani Jaswal

School of Computing,

National College of Ireland

Dublin, Ireland

Harshitha Kamal Kannan

Department of Computer Science and Engineering,

Vidyavardhaka College of Engineering

Mysore, Karnataka, India

Gayana J. Kumar

Department of Computer Science and Engineering

Vidyavardhaka College of Engineering

Mysore, Karnataka, India

Nidhi Kushwaha

National Institute Technology

Jamshedpur, India

Priyanshi Mishra

Jaypee University of Engineering and Technology

Guna University

Raghogarh-Vijaypur, Madhya Pradesh, India

Vedavathi N.

Department of Computer Science and Engineering

Vidyavardhaka College of Engineering

Mysore, Karnataka, India

Chiranth Nagaprasanna

Department of Computer Science and Engineering

Vidyavardhaka College of Engineering

Mysore, Karnataka, India

Rajkumar Nagulsamy

School of Computing

National College of Ireland

Dublin, Ireland

Anirudh Negi

School of Computing

DIT University

Dehradun, Uttarakhand, India

Sahil Raj

School of Computing

DIT University

Dehradun, Uttarakhand, India

Pradeep Kumar Rawat

School of Computing

DIT University

Dehradun, Uttarakhand, India

Chirashwi S.

Department of Computer Science and Engineering

Vidyavardhaka College of Engineering

Mysore, Karnataka, India

Bhavna Saini

Central University of Rajasthan

Ajmer, Rajasthan, India

Saanch Sapra

Jaypee University of Information Technology

Waknaghat, Himachal Pradesh, India

Bharat Singh

Indian Institute of Information Technology

Ranchi, Jharkhand, India

Nayana Singh

Jaypee University of Information Technology

Waknaghat, Himachal Pradesh, India

Shristi Sonam

Jaypee University of Information Technology

Waknaghat, Himachal Pradesh, India

Prateek Kumar Soni

Jaypee Institute of Information Technology

Noida, Uttar Pradesh, India

Rohit Verma

School of Computing

National College of Ireland

Dublin, Ireland

Vivek Kumar Verma

Manipal University Jaipur

Jaipur, Rajasthan, India

Chapter 1

Introduction to Resource

Optimization in Fog and

Edge Computing

Pratik Gupta and Prateek Kumar Soni

DOI: 10.1201/9781003610168-1

1.1 Introduction

Resource optimization in fog and edge computing involves

the efficient allocation, management, and utilization of

computational, storage, and network resources. It is critical

for:

1. Performance Enhancement: Resource optimization in

fog and edge computing is critical for real-time

applications that require rapid responses, such as

autonomous vehicles and healthcare monitoring. By

processing data closer to the source, tasks experience

reduced latency, ensuring faster decision-making.

Optimized task scheduling, load balancing, and

prioritization of time-sensitive workloads further

http://doi.org/10.1201/9781003610168-1

enhance responsiveness. High throughput is achieved

by leveraging parallel processing, dynamic resource

provisioning, and data aggregation techniques,

enabling the system to handle large volumes of data

efficiently. Together, these optimizations ensure that

real-time applications operate seamlessly with minimal

delays and maximum efficiency.

2. Energy Efficiency: Energy efficiency is crucial in fog and

edge computing, particularly for battery-powered edge

devices. By optimizing resource usage and minimizing

unnecessary computations or data transmissions,

energy consumption is reduced. Techniques such as

task offloading, where computation is shifted to more

power-efficient fog nodes, and the use of low-power

hardware can extend battery life. Additionally, dynamic

resource scaling and energy-aware scheduling ensure

that edge devices consume energy only when

necessary, balancing performance needs with power

efficiency. This optimization helps prolong the lifespan

of edge devices and reduces operational costs.

3. Cost Reduction: In fog and edge computing, cost

reduction is achieved through efficient resource

utilization, where computational, storage, and network

resources are allocated and managed optimally. By

reducing over-provisioning and underutilization of

resources, organizations can minimize infrastructure

costs. Techniques like dynamic scaling allow resources

to be provisioned on demand, ensuring that only the

necessary amount is used at any given time. Task

offloading to fog or cloud nodes, when local processing

is inefficient, further reduces the cost of maintaining

high-performance edge devices. This approach ensures

that resources are used effectively, lowering both

capital and operational expenses.

4. Scalability: Scalability in fog and edge computing

ensures that the system can accommodate an

increasing number of devices and applications without

sacrificing performance. By dynamically provisioning

resources and distributing workloads across multiple

edge and fog nodes, the system adapts to rising

demands. Efficient resource management strategies,

such as load balancing and elastic scaling, enable

seamless expansion, ensuring that new devices or

applications are integrated smoothly. This scalability

ensures that performance remains consistent even as

the network grows, preventing bottlenecks and

maintaining high throughput and low latency for all

connected devices.

5. Quality of Service (QoS): Meeting the specific

requirements of diverse applications, including

reliability, latency, and bandwidth. In fog and edge

computing, QoS ensures that diverse applications, each

with unique performance needs, receive the

appropriate level of service. QoS management

addresses requirements such as low latency for real-

time applications, high reliability for critical systems,

and sufficient bandwidth for data-intensive tasks. By

prioritizing traffic, allocating resources dynamically,

and implementing efficient routing and scheduling, QoS

guarantees that applications meet their specific

performance criteria. This approach helps maintain

seamless operations across various use cases, from

healthcare and industrial monitoring to autonomous

systems, ensuring that the network can handle

different types of demands without compromising on

service quality [1].

Key Challenges

1. Heterogeneity: Fog and edge environments involve

diverse devices with varying computational power,

storage, and energy constraints.

Fog and edge environments are characterized by a

wide range of devices with differing computational

capabilities, storage capacities, and energy limitations.

These environments often include a mix of resource-

rich devices, such as powerful edge servers, and

resource-constrained devices like Internet of Things

(IoT) sensors or mobile devices. The heterogeneity in

these devices presents challenges in managing

workloads efficiently, ensuring data processing is

optimized for the available resources, and maintaining

system reliability under varying energy constraints [2–

5]. As a result, solutions must be adaptive and scalable

to accommodate the diverse nature of devices and

their specific operational requirements within fog and

edge networks.

2. Dynamic Workloads: Real-time applications generate

fluctuating workloads, requiring adaptive resource

allocation.

Real-time applications often generate fluctuating

workloads that can vary significantly depending on

factors such as user demand, environmental changes,

or system conditions. These applications, which include

streaming, gaming, and autonomous systems, require

timely processing of data with minimal latency. To

ensure optimal performance, resources like

computational power, storage, and network bandwidth

need to be allocated dynamically, adjusting in real-time

to meet the demands of these workloads. This

adaptability is essential in preventing bottlenecks,

maintaining responsiveness, and efficiently using

available resources, as the system must quickly

respond to both anticipated and unexpected

fluctuations in workload intensity.

3. Limited Resources: Edge devices typically have less

computational power and storage than cloud data

centers.

Edge devices, which are positioned closer to the data

source or end-user, typically have less computational

power, storage capacity, and energy resources

compared to centralized cloud data centers. These

devices are designed to perform localized processing

and analysis, often with constraints such as limited

processing speed, smaller memory, and restricted

power availability. While cloud data centers benefit

from robust infrastructure, including powerful servers

and vast storage networks, edge devices must operate

efficiently within these limitations. As a result,

managing resource allocation at the edge requires

careful optimization, balancing performance and

energy consumption while ensuring that critical tasks

can still be performed locally without relying heavily on

distant cloud resources.

4. Geographic Distribution: Devices are spread across

various locations, complicating resource coordination

and task scheduling.

In fog and edge computing environments, devices are

often geographically distributed across diverse

locations, ranging from urban centers to remote or

rural areas. This widespread distribution complicates

the coordination of resources and task scheduling, as it

introduces challenges such as network latency,

bandwidth limitations, and varying availability of

resources. Tasks may need to be assigned to devices

based not only on their capabilities but also on their

proximity to data sources, user locations, or specific

regional requirements. Efficiently managing these

distributed resources requires intelligent scheduling

and load balancing algorithms that can take into

account the geographical spread, ensuring that tasks

are processed where they can be completed most

effectively, minimizing delays, and optimizing resource

usage across the network [6].

5. Security and Privacy: Ensuring secure data

transmission and computation without overloading

resource-constrained devices.

Ensuring secure data transmission and computation on

resource-constrained devices requires a balance

between robust encryption methods and efficient

resource management. Lightweight cryptographic

algorithms, such as elliptic curve cryptography (ECC) or

lightweight symmetric ciphers, can be employed to

minimize the computational overhead while

maintaining strong security. Additionally, data can be

encrypted locally on the device before transmission

and decrypted only at the receiving end, ensuring

privacy. Optimizing protocols for low-power

consumption and leveraging edge computing or

distributed processing can further reduce the strain on

resource-constrained devices, allowing them to

securely handle sensitive data without sacrificing

performance or security.

1.2 Strategies for Resource Optimization

1. Task Offloading: Deciding whether to process tasks

locally, at the fog layer, or in the cloud based on

resource availability and application requirements [1,

7, 8].

Task offloading is a strategic decision-making process

where tasks are dynamically assigned to different

computational layers—local devices, fog nodes, or the

cloud—based on factors like resource availability,

network conditions, and application requirements.

Local processing is favored when low latency and quick

response times are crucial, while fog computing offers

a middle ground by providing computational resources

closer to the user, reducing latency without

overloading the local device. Offloading to the cloud is

ideal for resource-intensive tasks or when large-scale

data processing and storage are needed, though it may

introduce higher latency due to network transmission.

By considering factors such as computational power,

energy efficiency, and real-time demands, task

offloading ensures efficient resource utilization and

optimal system performance.

2. Load Balancing: Distributing workloads across devices

to prevent bottlenecks and ensure efficient utilization.

Load balancing involves distributing workloads across

multiple devices or resources to prevent any single

device from becoming overwhelmed, thereby avoiding

bottlenecks and ensuring efficient utilization of

available resources. By intelligently allocating tasks

based on factors like processing power, current

workload, and network conditions, load balancing helps

maintain consistent system performance, minimizes

delays, and maximizes throughput. In systems with

diverse computational resources, such as edge

devices, fog nodes, and cloud servers, effective load

balancing ensures that no single layer or device is

overburdened, while optimizing overall efficiency,

reducing latency, and improving the responsiveness of

applications [9].

3. Energy-Aware Computing: Designing algorithms that

minimize energy consumption while maintaining

performance.

Energy-aware computing involves designing algorithms

and systems that optimize energy consumption without

compromising performance. By intelligently managing

computational resources, such as dynamically

adjusting processing power, reducing unnecessary

operations, or offloading tasks to more energy-efficient

layers (e.g., fog or cloud), energy-aware algorithms aim

to balance energy efficiency with the required

performance levels. This approach is particularly

crucial in mobile, IoT, and edge computing

environments, where energy resources are limited, and

devices must operate for extended periods without

frequent recharging. Through techniques like workload

distribution, hardware-level optimizations, and

adaptive processing, energy-aware computing helps

extend device battery life while ensuring that

applications continue to function effectively.

4. Caching and Data Placement: Optimizing data storage

and retrieval to reduce latency and bandwidth usage.

Caching and data placement involve strategically

storing data in locations that optimize access speed

and reduce the demand on network resources. By

placing frequently accessed data closer to the user or

at intermediate nodes (such as edge or fog servers),

caching minimizes latency and reduces the need for

repeated data retrieval from distant storage locations,

such as the cloud. Effective data placement further

ensures that data is stored where it will be most

efficiently accessed, considering factors like usage

patterns, resource availability, and network conditions.

This approach not only accelerates data retrieval times

but also lowers bandwidth usage by decreasing the

amount of data transmitted over the network, thereby

improving overall system performance and user

experience [10, 11].

5. Artificial intelligence (AI) and Machine Learning:

Employing predictive models to adapt resource

allocation dynamically based on historical and real-time

data [10–15].

AI and machine learning in resource allocation involve

using predictive models to dynamically adjust

resources based on both historical data and real-time

conditions. By analyzing patterns in past usage, system

performance, and environmental factors, these models

can forecast future demands and optimize resource

distribution accordingly. For instance, machine learning

algorithms can predict when computational resources

will be heavily needed or when energy consumption

will spike, allowing systems to preemptively allocate

resources or adjust processes to maintain efficiency.

This adaptive approach ensures that resources are

utilized optimally, reduces waste, improves

performance, and enhances user experience by

responding intelligently to changing conditions in real

time.

1.3 Applications

Smart Cities: Optimizing resources for applications like

traffic management, surveillance, and waste

management.

Smart cities leverage fog and edge computing to

optimize resources for critical applications such as

traffic management, surveillance, and waste

management. By processing data closer to the source,

these technologies reduce latency, enabling real-time

decision-making and enhancing system responsiveness.

For example, traffic management systems can

dynamically adjust signals to alleviate congestion,

surveillance systems can analyze footage for immediate

threat detection, and waste management can

streamline collection schedules based on real-time fill

levels of bins. This localized data processing results in

improved operational efficiency, reduced resource

wastage, and a better quality of urban living.

Healthcare: Enhancing the performance of remote health

monitoring and diagnostic systems.

In healthcare, fog and edge computing enhance the

performance of remote health monitoring and diagnostic

systems by processing data closer to patients and

healthcare providers. This reduces latency, enabling

real-time analysis of vital signs, early detection of

anomalies, and quicker decision-making. For instance,

wearable devices can continuously monitor a patient’s

health and transmit critical data to nearby edge servers

for immediate analysis, alerting medical professionals

regarding potential issues. Additionally, diagnostic

systems can process and share medical imaging data

locally, minimizing delays in diagnosis and treatment.

This localized approach improves patient outcomes,

optimizes resource utilization, and supports the delivery

of timely and personalized healthcare services.

Industrial IoT (IIoT): Managing resources in industrial

automation and predictive maintenance.

In IIoT, fog and edge computing play a crucial role in

managing resources for industrial automation and

predictive maintenance. By processing data at the edge,

these technologies minimize latency and enable real-

time monitoring of machinery and systems. For

example, sensors on manufacturing equipment can

continuously collect performance data and analyze it

locally to detect potential faults before they lead to

failures, thereby reducing downtime. Similarly,

automation systems can make rapid decisions based on

localized data to optimize production processes. This

approach not only enhances operational efficiency but

also extends equipment lifespan and reduces

maintenance costs, making industries more resilient and

cost-effective.

Autonomous Vehicles: Reducing latency for real-time

decision-making and data processing.

In autonomous vehicles, fog and edge computing are

essential for reducing latency in real-time decision-

making and data processing. These technologies enable

vehicles to process vast amounts of sensor data, such

as information from cameras, Light Detection and

Ranging (LiDAR), and radar, directly on the vehicle or at

nearby edge servers. This localized processing ensures

rapid responses to dynamic driving conditions, such as

detecting obstacles, navigating traffic, or responding to

sudden hazards. For example, when a pedestrian

crosses unexpectedly, edge computing allows the

vehicle to instantly process the sensor data and apply

the brakes without relying on distant cloud servers. By

minimizing delays, fog and edge computing enhance

safety, improve navigation efficiency, and support the

reliable operation of autonomous systems in real-world

environments.

Resource optimization in fog and edge computing plays a

pivotal role in meeting the demands of modern applications.

By addressing the challenges and adopting effective

strategies, these paradigms can unlock their full potential to

support a wide range of use cases.

1.4 Resource Optimization in Fog and Edge

Computing: A Detailed Overview

Resource optimization in fog and edge computing is

essential to address the unique challenges posed by these

decentralized environments, which bring computation,

storage, and networking closer to data sources like IoT

devices. By minimizing latency, these paradigms enhance

application performance, enabling real-time responses and

efficient operations. However, the limited computational

capacity of edge devices, dynamic network conditions, and

the need to balance energy efficiency with performance

demand innovative resource optimization techniques.

Effective strategies ensure that these systems achieve their

full potential to support diverse, latency-sensitive

applications while overcoming the inherent complexity of

decentralized architectures.

Fog and edge computing shift computation, storage, and

networking closer to the data sources, such as IoT devices,

to minimize latency and improve application performance.

However, these decentralized environments present

unique challenges that demand effective resource

optimization techniques.

1. Challenges in Resource Optimization

a. Heterogeneity

Heterogeneity is one of the most significant

challenges in resource optimization within fog and

edge computing environments. These systems

consist of diverse devices, each with varying

capabilities in computation power, storage capacity,

and energy availability. Managing resources

effectively in such a mixed ecosystem requires

addressing the following aspects:

Fog and edge environments consist of diverse

devices, including sensors, gateways, and edge

servers, with varying capabilities in terms of:

i. Computation power (e.g., IoT sensors vs. edge

servers).

The computational capabilities of devices in fog

and edge environments vary widely. For example:

IoT Sensors: These are lightweight devices

designed primarily for data collection and

transmission. They have minimal

computational capabilities and rely on edge

or cloud servers for processing.

Edge Servers: These are more powerful

devices located closer to the data sources.

They can handle intensive computation

tasks but are still less capable than

centralized data centers. The disparity in

computational power necessitates dynamic

task allocation strategies, where lightweight

devices offload tasks to more capable nodes

or edge servers. Balancing these tasks to

prevent overloading high-capacity nodes

while ensuring efficient operation of low-

capacity devices is critical

ii. Storage capacity (e.g., low-capacity edge nodes

vs. centralized data centers).

Storage capabilities differ significantly across

devices:

Low-Capacity Edge Nodes: Many edge

nodes, such as gateways and smaller

servers, have limited storage capacity,

making them suitable for temporary data

caching or short-term storage.

Centralized Data Centers: These have

vast storage resources and are ideal for

archiving large datasets and performing

long-term analytics. Efficient storage

management requires optimizing where and

how data is stored. For instance, frequently

accessed data can be cached at edge nodes

to reduce latency, while less critical data

can be transmitted to centralized data

centers for long-term storage.

iii. Energy availability (e.g., battery-operated

devices vs. mains-powered nodes).

Energy constraints are a critical factor in

heterogeneous environments:

Battery-Operated Devices: Many IoT

sensors and edge devices operate on

batteries, which makes energy efficiency a

top priority. These devices must balance

performance with energy conservation to

extend their operational life.

Mains-Powered Nodes: Devices

connected to a stable power source, such as

edge servers and gateways, can perform

more energy-intensive operations without

concern for battery depletion. Resource

optimization strategies must consider the

energy profiles of devices to prioritize

energy-efficient operations for battery-

powered nodes while maximizing the

capabilities of mains-powered devices.

iv. Limited Resources: Unlike cloud data centers,

edge devices have constrained resources, such

as:

Limited processing power for executing

computation-intensive tasks.

Edge devices, such as IoT sensors, gateways, and

small servers, often lack the processing

capabilities required for computation-intensive

tasks. For example:

IoT Sensors: These devices are primarily

designed for data collection and are

typically equipped with low-power

processors to conserve energy.

Edge Gateways: While more powerful than

sensors, gateways have limited

computational resources compared to cloud

servers. This constraint means that tasks

requiring significant computational power,

such as AI model training, large-scale

analytics, or video processing, must be

simplified, distributed across multiple edge

devices, or offloaded to nearby cloud nodes.

The challenge lies in designing systems that

intelligently distribute or offload tasks while

maintaining low latency and high reliability.

v. Restricted storage for data caching and

persistence.

Edge devices are also limited in their ability to

store large volumes of data. For instance:

Temporary Caching: Many edge devices

can only cache data for short durations,

which is suitable for real-time or near-real-

time applications but inadequate for long-

term storage.

Data Persistence: The lack of sufficient

storage means that historical data or less

frequently accessed data must be

transferred to cloud servers or centralized

data centers for archiving and analysis.

Effective resource optimization strategies

for storage involve determining what data

should be cached at the edge, transmitted

to the cloud, or discarded. This requires

intelligent algorithms that consider data

importance, access frequency, and storage

availability to optimize storage usage

without compromising performance.

vi. Bandwidth constraints in communicating with

other devices or the cloud.

Bandwidth limitations significantly impact the

ability of edge devices to communicate with

other devices or the cloud. Key challenges

include:

Limited Connectivity: Many edge

environments rely on wireless networks,

which may suffer from limited bandwidth,

latency, or intermittent connectivity.

Data Transmission Costs: Transmitting

large amounts of data from edge devices to

the cloud can be expensive and inefficient,

especially for applications requiring high-

frequency updates.

Network Congestion: As the number of

connected devices grows, bandwidth

constraints can lead to network congestion,

resulting in delays and degraded

performance. To mitigate these challenges,

resource optimization must focus on

minimizing data transfer by employing

techniques such as data compression,

intelligent data filtering, and local

processing to reduce the amount of

information sent to the cloud.

b. Dynamic Workloads

IoT applications generate unpredictable, fluctuating

workloads. In IoT applications, workloads can

fluctuate unpredictably due to varying tasks and

events from numerous connected devices.

Balancing these workloads dynamically is essential

to prevent some devices from being overloaded

while others remain underutilized. This requires real-

time monitoring of each device’s capacity and

adjusting task distribution accordingly, ensuring

optimal resource use and preventing performance

issues. Proper workload balancing improves

efficiency, reduces latency, enhances reliability, and

optimizes energy consumption, particularly in

battery-powered devices, making the entire IoT

system more responsive and reliable. Balancing

tasks between devices dynamically is crucial to

prevent overloading some nodes while

underutilizing others [11, 17].

c. Geographic Distribution

Fog and edge nodes are geographically dispersed,

making coordination and resource sharing

challenging. As the distance between nodes

increases, network latency also rises, leading to

delays in data communication. Additionally, data

transfer costs tend to increase with distance, as

more resources are required to send information

across longer networks. These factors make it

difficult to manage workloads efficiently and

maintain fast, cost-effective communication

between geographically dispersed devices in fog

and edge computing environments. Network latency

and data transfer costs increase with distance.

d. Energy Efficiency

Many edge devices in IoT systems are energy-

constrained, often relying on limited battery power

for operation. To ensure sustainable and long-term

functionality, it is crucial to implement power-aware

algorithms that optimize energy usage. These

algorithms dynamically manage device activity,

adjust processing loads, and minimize unnecessary

data transmission, helping to conserve energy while

maintaining performance. By prioritizing energy

efficiency, these algorithms extend the lifespan of

devices, reduce the need for frequent recharging or

replacement, and contribute to the overall

sustainability of the IoT system. Many edge devices

are energy-constrained, requiring power-aware

algorithms to ensure sustainable operation.

e. Security and Privacy

In IoT systems, data processed at the edge often

contains sensitive information, making security and

privacy a top priority. However, implementing robust

security measures like encryption on resource-

constrained edge devices poses a significant

challenge, as these devices typically have limited

processing power, memory, and energy. Balancing

the need for strong encryption with the constraints

of edge devices requires efficient, lightweight

security algorithms that do not compromise the

device’s performance or battery life. This delicate

balance is crucial to ensuring data privacy while

maintaining the functionality and efficiency of the

IoT network. Data processed at the edge often

contains sensitive information. Implementing

security measures like encryption without

overloading resource-constrained devices is a

significant challenge.

2. Optimization Techniques and Strategies

a. Task Offloading

Definition: Task offloading involves transferring

tasks from resource-constrained edge devices to

more powerful fog nodes or cloud data centers

based on resource availability, helping to optimize

performance

Objective: The primary objectives of task offloading

are to minimize:

Latency: Reducing delays by executing tasks

on more powerful nodes closer to data centers.

Energy Consumption: Offloading

computationally heavy tasks to devices with

higher energy resources, thus preserving

battery life of edge devices.

Approaches to Task Offloading:

1. Full Offloading:

Description: All tasks are sent to the fog

nodes or cloud data centers for execution.

Benefit: Maximizes computational power

and resources available in fog/cloud

environments, ensuring tasks are

processed quickly without overburdening

edge devices.

Drawback: Increases network traffic and

data transfer costs, as the entire task has

to be transmitted to remote servers.

Latency can be an issue if the nodes are

far apart.

Partial Offloading:

Description: Tasks are divided into parts, with

some being executed locally on the edge

device and others offloaded to fog/cloud nodes.

Benefit: Strikes a balance between local

processing and offloading, optimizing resource

use on edge devices while leveraging cloud/fog

resources when needed. It can reduce latency

and energy consumption depending on the

division of tasks.

Drawback: The complexity of deciding how to

divide the tasks efficiently and managing the

synchronization between local and offloaded

components.

b. Load Balancing

Definition: Load balancing involves distributing

workloads across multiple nodes in a system to

ensure that no single node becomes overloaded,

thus preventing bottlenecks and optimizing resource

utilization.

Techniques for Load Balancing:

1. Round-Robin Scheduling:

Description: Tasks are distributed

sequentially across nodes in a circular

manner. Each node receives the next task in

the sequence, ensuring an even distribution

of work.

Benefit: Simple and easy to implement,

ensuring that all nodes receive an equal

share of tasks over time.

Drawback: It doesn’t consider the current

load or capacity of the nodes, which could

lead to inefficient resource utilization if

some nodes are more powerful or

underutilized than others.

2. Priority-Based Scheduling:

Description: Tasks with higher QoS

requirements are given preference, ensuring

that more critical tasks are processed first.

Benefit: Guarantees that important tasks

with stricter deadlines or higher resource

needs are prioritized, ensuring optimal

performance for critical applications.

Drawback: Lower-priority tasks may

experience delays, especially if there are

numerous high-priority tasks, potentially

causing imbalance in workload distribution.

3. Dynamic Allocation:

Description: Real-time monitoring of the

system’s resources (e.g., CPU, memory, and

network bandwidth) allows for adaptive

allocation of tasks based on the current load

on each node.

Benefit: Maximizes resource utilization by

continuously adjusting the task distribution

based on the actual workload and available

resources, optimizing performance and

reducing latency.

Drawback: Requires more complex

algorithms and overhead for continuous

monitoring and decision-making, potentially

increasing the system’s complexity.

c. Energy-Aware Optimization

Definition:

Energy-aware optimization focuses on reducing

energy consumption in a system by applying

strategies and techniques that minimize power

usage without compromising performance,

especially in resource-constrained devices.

Techniques for Energy-Aware Optimization:

1. Energy-Efficient Scheduling:

Description: Tasks are allocated to nodes

with lower energy consumption, ensuring

that power-hungry devices are avoided for

tasks that don’t require high processing

power.

Benefit: Reduces overall energy

consumption by selecting nodes that are

more power efficient for specific tasks,

optimizing the system’s energy usage.

Drawback: May lead to performance

degradation if less powerful nodes are

consistently chosen for demanding tasks, as

they may not be able to execute them

efficiently.

2. Dynamic Voltage and Frequency Scaling

(DVFS):

Description: The power levels of

processors are adjusted in real-time based

on workload demands. When the system is

under low load, the processor voltage and

frequency are reduced to save energy, and

when the workload increases, they are

ramped up to meet demand.

Benefit: Helps to balance power

consumption with performance

requirements, reducing energy usage during

low-demand periods without significantly

affecting performance.

Drawback: Continuous scaling can

introduce latency and may cause

inefficiencies if the system doesn’t scale

optimally, particularly in systems with

unpredictable workloads.

3. Sleep/Wake Strategies:

Description: Devices that are idle or

underutilized are put into low-power states

(sleep mode), and only woken up when

needed, conserving energy during periods of

inactivity.

Benefit: Significantly reduces energy

consumption by ensuring that devices

consume minimal power when they are not

in use, extending battery life and reducing

operational costs.

Drawback: There may be a delay when

waking up devices from sleep mode, which

can impact system responsiveness,

especially in time-sensitive applications.

These energy-aware optimization

techniques aim to balance the need for

power conservation with the system’s

operational demands, improving overall

energy efficiency while maintaining

functional performance.

d. Caching and Data Placement

Definition:

Caching and data placement involve storing

frequently accessed data closer to end-users or

devices, reducing latency and improving data

retrieval times by avoiding long-distance data

transfers.

Approaches for Caching and Data Placement:

1. Proactive Caching:

Description: Future data needs are

predicted based on user behavior, and data

is preemptively stored at nearby nodes to

minimize future access delays.

Benefit: Reduces latency by ensuring that

the most likely data to be accessed is

already available locally, improving

response times and user experience.

Drawback: Requires accurate prediction

algorithms, which can be complex to

implement, and may result in unnecessary

caching if predictions are not accurate,

wasting storage resources.

2. Data Replication

Description: Multiple copies of data are

stored across different nodes to ensure

reliability and faster access. If one node fails

or is too far away, data can be retrieved

from another replica.

Benefit: Enhances data availability and

reliability, ensuring that data is accessible

even in case of node failures or high-

demand situations, while also improving

access speeds by distributing copies across

locations.

Drawback: Increases storage requirements,

as maintaining multiple copies of the same

data can be resource-intensive and costly,

especially in large-scale systems.

Both approaches focus on improving data

access speed and reducing latency, with

proactive caching targeting future data

needs and data replication focusing on

reliability and availability.

e. AI and Machine Learning

Applications:

AI and machine learning are increasingly being used

in IoT and distributed systems to optimize

performance, enhance decision-making, and

improve efficiency through intelligent algorithms.

Applications for AI and Machine Learning:

1. Predictive Task Scheduling:

Description: Historical data is analyzed to

predict future workloads, helping to optimize

the distribution of tasks across nodes and

reduce delays or resource overloads.

Benefit: Enhances system efficiency by

anticipating workload peaks and

dynamically adjusting task scheduling to

ensure resources are allocated effectively in

advance.

Drawback: Requires accurate historical

data and sophisticated models to ensure

predictions are reliable; poor predictions can

lead to misallocation of resources.

2. Anomaly Detection:

Description: AI models are used to identify

unusual patterns in resource usage or

system behavior, enabling early detection of

potential issues or failures before they affect

performance.

Benefit: Helps maintain system reliability

by identifying and addressing issues

proactively, preventing system downtimes

or crashes.

Drawback: Requires continuous monitoring

and accurate model training to minimize

false positives or missed anomalies, which

can be complex and resource-intensive.

3. Reinforcement Learning:

Description: The system learns optimal

strategies for resource allocation by

interacting with its environment and

receiving feedback on performance,

allowing it to adapt and improve over time.

Benefit: Enables dynamic, self-optimizing

systems that can continuously improve

resource allocation based on real-time

feedback, making them highly adaptive and

efficient.

Drawback: Training reinforcement learning

models can be time-consuming and

computationally expensive, and the system

may require a long time to converge to

optimal solutions.

These AI and machine learning applications

enhance system performance by making

intelligent predictions, detecting anomalies

early, and continuously optimizing resource

management, leading to more efficient and

reliable IoT and distributed systems.

f. Network Optimization

Definition:

Network optimization involves improving network

performance by managing resources like bandwidth,

communication paths, and traffic flow to enhance

system efficiency, reduce delays, and avoid

congestion.

Techniques for Network Optimization:

1. Bandwidth Management:

Description: Prioritizes critical data flows

over less important ones to ensure that

important data is transmitted with minimal

delay and congestion.

Benefit: Ensures that high-priority tasks,

such as real-time communication or critical

data transfers, are not delayed by less time-

sensitive data, improving overall system

responsiveness.

Drawback: Requires accurate identification

of priority data and dynamic adjustment of

bandwidth allocation, which can increase

complexity and overhead.

2. Edge-to-Edge Communication:

Description: Enables direct communication

between edge nodes (devices at the edge of

the network), reducing the need to send all

data through centralized servers or cloud

infrastructure.

Benefit: Reduces network traffic and

reliance on centralized servers, lowering

latency and improving system

responsiveness by allowing nodes to

interact more efficiently.

Drawback: Requires a robust and secure

communication protocol between edge

devices, and may not always be feasible if

nodes are geographically dispersed or lack

sufficient connectivity.

Both techniques aim to optimize network

performance by minimizing congestion,

reducing latency, and improving data flow,

leading to more efficient and responsive

system

1.5 Applications of Resource Optimization in

Smart Cities

1. Traffic Monitoring and Control:

Intelligent Traffic Lights: Adaptive signal

control systems adjust traffic light timings based

on real-time traffic flow, reducing congestion and

improving traffic flow.

Smart Parking: Sensors and apps help drivers

find available parking spots, minimizing time

spent searching for parking and reducing

congestion.

Real-Time Traffic Analytics: Data collected from

vehicles, cameras, and sensors helps in predicting

traffic patterns and adjusting traffic signals

accordingly.

Congestion Management: Resource

optimization strategies like carpooling, road

pricing, or alternative route suggestions help

reduce traffic bottlenecks.

2. Public Safety and Surveillance Systems

Smart Surveillance: AI-powered cameras with

facial recognition and real-time monitoring can

enhance security and detect suspicious activities,

leading to faster response times.

Emergency Response Optimization: Using

data analytics to predict and optimize the

response times of emergency services (police,

fire, and ambulance) for better public safety.

Predictive Policing: Analysis of crime data helps

in predicting crime hotspots and deploying law

enforcement resources efficiently.

Disaster Management: Resource optimization

helps in efficient evacuation planning, resource

distribution, and coordination during natural

disasters.

3. Waste and Water Management

Smart Waste Collection: Sensors placed in bins

detect fill levels, optimizing waste collection

routes and frequency, saving time and fuel.

Waste Sorting and Recycling: Automation in

sorting waste helps in better recycling, reducing

landfill usage and improving resource utilization.

Water Leak Detection: Sensors and IoT devices

monitor water systems in real-time to detect leaks

and prevent water wastage.

Water Usage Optimization: Smart meters and

data analytics help in managing water distribution

efficiently, reducing wastage, and ensuring

equitable distribution.

Rainwater Harvesting Systems: Resource

optimization strategies can promote the collection

and use of rainwater, ensuring sustainable water

supply in urban areas.

Applications of Resource Optimization in Healthcare:

1. Real-Time Health Monitoring (e.g., Wearable

Devices)

Continuous Monitoring: Wearable devices track

vital signs like heart rate, blood pressure, and

oxygen levels in real time, providing constant

health data.

Early Detection: These devices help in detecting

anomalies (e.g., irregular heartbeats or blood

sugar levels) early, enabling prompt intervention

and reducing hospital visits.

Personalized Healthcare: Data collected from

wearables can be analyzed to create personalized

health plans and optimize treatment for

individuals.

Health Behavior Insights: Wearables provide

feedback on daily physical activity, sleep, and

stress levels, helping individuals make healthier

lifestyle choices.

2. Remote Diagnostics and Telemedicine:

Virtual Consultations: Telemedicine platforms

allow patients to consult doctors remotely,

reducing the need for in-person visits and

optimizing healthcare access, especially in remote

or underserved areas.

Remote Monitoring: Healthcare professionals

can monitor patients’ health remotely through

connected devices, offering timely interventions

without requiring hospital admission.

Diagnostic Tools: Telemedicine enables access

to diagnostic tests (like blood pressure readings,

electrocardiogram, etc.) remotely, improving the

speed and efficiency of diagnosis.

Access to Specialists: Patients in rural or distant

areas can connect with specialized doctors via

telemedicine, optimizing the use of specialized

healthcare resources.

3. Emergency Response Systems

Optimized Ambulance Dispatch: Data analytics

and AI optimize the allocation of ambulances

based on the location of emergencies, ensuring

quicker response times.

Real-Time Communication: Emergency teams

can receive real-time information about the

patient’s condition (from wearables, for example),

allowing them to prepare in advance and optimize

care upon arrival.

Health Data Integration: Emergency response

systems integrate patient data from various

sources (e.g., wearables and electronic health

records), enabling informed decision-making and

resource allocation during critical situations.

Efficient Resource Allocation: By analyzing

past emergency trends, healthcare resources

(staff, equipment) can be allocated more

effectively, ensuring that they are ready for high-

demand periods.

Predictive Maintenance of Machinery in IIoT [18–20]:

Condition Monitoring: IIoT sensors continuously

monitor the health of machines, detecting vibrations,

temperature, and other performance indicators that

could signal a potential failure.

Data Analytics: Collected data is analyzed to predict

when a machine is likely to fail, allowing for timely

maintenance and avoiding costly breakdowns.

Minimized Downtime: By addressing issues before

they cause significant damage, predictive maintenance

ensures minimal production downtime and reduces the

need for expensive emergency repairs.

Extended Equipment Life: Optimizing maintenance

schedules based on real-time data helps extend the

lifespan of machinery, reducing overall capital

expenditure.

Real-Time Monitoring of Production Lines:

Process Optimization: IIoT sensors track every

aspect of the production line, including speed, quality,

and output, ensuring optimal performance and quickly

identifying inefficiencies.

Quality Control: Real-time monitoring allows for the

immediate detection of defects or deviations from

quality standards, enabling quick adjustments and

minimizing waste.

Automated Reporting: IIoT systems automatically

generate reports on production status, reducing the

need for manual checks and improving decision-

making.

Resource Allocation: Data from the production line

helps managers allocate labor and resources more

efficiently, optimizing operational workflows and

reducing bottlenecks.

Energy Management in Industrial Facilities:

Smart Energy Meters: IIoT devices track energy

usage across different machinery and departments,

providing real-time insights into energy consumption

patterns.

Energy Efficiency Optimization: By analyzing

energy data, IIoT helps identify areas of energy waste

and optimize consumption, reducing costs and

environmental impact.

Demand Response Systems: IIoT-enabled systems

can adjust energy usage during peak demand times,

automatically scaling back operations or switching to

alternative energy sources to reduce costs.

Predictive Power Consumption: Using data from

production schedules and equipment performance, IIoT

systems predict and optimize energy needs, ensuring

that energy is used efficiently without excess.

Real-Time Decision-Making for Navigation in Autonomous

Vehicles:

Dynamic Route Adjustment: Autonomous vehicles

continuously analyze real-time data from sensors,

global positioning system, and traffic updates to make

decisions about the best routes, avoiding traffic jams

and roadblocks.

Adaptability to Changing Conditions: The vehicle

adjusts its route and speed based on changing factors

like weather conditions, construction zones, or

accidents, optimizing travel time.

Smart Traffic Navigation: Using AI and machine

learning algorithms, autonomous vehicles can

anticipate and respond to traffic signals, road signs,

and pedestrian movements, ensuring smooth and

efficient navigation.

Efficient Energy Use: By optimizing speed and

acceleration patterns, autonomous vehicles can

minimize energy consumption, reducing overall fuel

usage or battery drain.

Collision Avoidance and Route Optimization:

Sensor Integration: Sensors such as cameras, LIDAR,

and radar continuously scan the environment for

potential hazards, including other vehicles,

pedestrians, and obstacles, to avoid collisions.

Real-Time Risk Assessment: AI algorithms process

the data from these sensors to assess risks and make

decisions that avoid accidents, including braking,

steering, or adjusting speed.

Optimal Path Selection: By analyzing traffic flow,

road conditions, and potential risks, autonomous

vehicles can select the safest and most efficient routes,

minimizing time and fuel consumption.

Vehicle-to-Vehicle Communication: Vehicles can

share information about their speed, position, and

intentions with each other, helping to prevent

accidents and optimize traffic flow.

Communication between Vehicles and Infrastructure

(V2X):

Vehicle-to-Infrastructure Communication:

Autonomous vehicles can communicate with traffic

signals, road signs, and other infrastructure, receiving

real-time updates on road conditions, signal changes,

and traffic patterns to optimize their movement.

Coordinated Traffic Flow: V2X communication helps

in synchronizing vehicle movements with traffic

management systems, reducing congestion and

ensuring smoother traffic flow.

Smart Parking and Charging Solutions: V2X can

enable vehicles to find parking spaces or charging

stations efficiently, reducing time spent searching and

optimizing resource usage.

Data Sharing for Better Planning: Autonomous

vehicles can share data with city infrastructure

systems, helping urban planners optimize road layouts,

signal timings, and public transportation strategies

based on real-time traffic patterns.

Personalized Marketing and Recommendations in Retail

and Commerce:

Data-Driven Insights: AI and machine learning

algorithms analyze customer behavior, purchase

history, and preferences to deliver personalized

marketing content and product recommendations.

Targeted Advertising: Retailers use customer data to

create highly targeted advertising campaigns, ensuring

that marketing efforts reach the right audience with

relevant products, improving conversion rates.

Dynamic Pricing: Prices are optimized based on

customer behavior, demand fluctuations, and

competitor pricing, ensuring the most competitive

pricing for consumers while maximizing profit.

Loyalty Programs: Personalized offers and

promotions based on purchasing patterns encourage

customer loyalty and increase repeat sales.

Inventory Management and Supply Chain Optimization:

Demand Forecasting: Predictive analytics help

retailers forecast demand accurately, ensuring that the

right amount of stock is available at the right time,

reducing excess inventory or stockouts.

Automated Replenishment: Using real-time sales

data and inventory levels, systems automatically

trigger restocking orders, preventing supply shortages

and reducing human intervention.

Warehouse Management: IoT and AI-driven systems

optimize storage, shelf management, and picking

processes in warehouses, reducing time and effort

involved in product retrieval.

Supply Chain Visibility: Advanced tracking and

analytics provide real-time visibility into the supply

chain, helping retailers identify inefficiencies and

improve resource allocation, reducing delays and costs.

Automated Checkout Systems:

Self-Checkout Stations: Automated checkout

systems allow customers to scan and pay for items

without cashier assistance, reducing wait times and

improving customer satisfaction.

Radio-Frequency Identification (RFID) and IoT

Technology: Items are automatically detected and

added to the customer’s cart using RFID tags, making

the checkout process seamless and faster.

Mobile Payment Solutions: Customers can use

mobile apps to scan and pay for products, further

streamlining the checkout process and reducing

reliance on traditional payment systems.

Fraud Prevention: AI algorithms analyze transaction

data in real time to detect unusual patterns and

prevent fraudulent transactions, ensuring secure and

efficient checkouts.

3. Future Directions in Resource Optimization

a. Edge-Cloud Collaboration [12, 21]

1. Seamless Integration of Edge, Fog, and

Cloud Resources:

Distributed Computing: Edge, fog, and

cloud resources work together to distribute

computational tasks more efficiently,

reducing latency by processing data closer

to the source (edge), while leveraging the

cloud for heavy computations.

Optimized Resource Allocation:

Workloads are dynamically assigned based

on the proximity to the data source and

resource availability, ensuring that time-

sensitive tasks are handled at the edge,

while non-urgent tasks are processed in the

cloud.

Multi-Tier Architecture: Edge devices

handle real-time data collection and

processing, fog nodes manage local data

storage and intermediate processing, and

the cloud handles large-scale data storage,

analytics, and long-term processing.

Cost Efficiency: By offloading nonessential

or less time-sensitive tasks to the cloud, and

keeping latency-sensitive tasks at the edge,

this collaboration optimizes the cost of

infrastructure, balancing local resource

usage and cloud computing expenses.

2. Real-Time Data Processing and Low

Latency:

Edge for Low-Latency Applications:

Edge devices handle time-sensitive tasks

such as real-time sensor data processing,

enabling faster decision-making in

applications like autonomous vehicles,

industrial IoT, and smart cities.

Fog for Localized Data Filtering: Fog

nodes help by filtering and aggregating data

from edge devices before sending it to the

cloud, reducing the volume of data

transmitted and improving overall system

responsiveness.

Cloud for Heavy Data Analytics: The

cloud can manage more resource-intensive

tasks like big data analytics, machine

learning model training, and long-term data

storage, while edge and fog nodes handle

immediate processing needs.

3. Dynamic Load Balancing and Scalability

Real-Time Load Distribution: Resource

optimization algorithms dynamically allocate

tasks between edge, fog, and cloud based

on current load and resource availability,

ensuring that no single tier is overwhelmed

and resources are used efficiently.

Scalable Infrastructure: As demand

fluctuates, the system can scale cloud

resources up or down automatically,

ensuring that performance and cost are

continuously optimized.

Elasticity of Resources: Edge devices and

fog nodes can act as intermediary

processors that help balance the load

between the cloud and edge, adapting in

real time to changing demands for both

performance and storage.

4. Data Privacy and Security

Data Localization at the Edge: Sensitive

data can be processed at the edge or fog

level, minimizing the need to transmit data

to the cloud and enhancing privacy and

security for applications like healthcare,

finance, and government.

Distributed Security Measures: Edge,

fog, and cloud resources collaborate in

implementing security protocols, ensuring

that data is protected at all points in the

data pipeline (local processing, transit, and

cloud storage).

Access Control and Authentication:

Using edge and fog nodes to handle

authentication and authorization can reduce

the risk of unauthorized access by enforcing

policies closer to the data source.

5. Energy Efficiency and Sustainability:

Energy-Aware Resource Management:

Edge and fog nodes are often more energy-

efficient for localized processing, reducing

the need for continuous cloud data transfers

and minimizing energy consumption.

Smart Energy Allocation: The

collaboration between edge, fog, and cloud

can be optimized to use energy resources in

the most sustainable way, considering the

energy costs of local devices and cloud-

based data centers.

Reduced Data Transmission Costs: By

processing data locally at the edge or fog

levels, the need for large-scale data

transmission to the cloud is reduced, leading

to lower network energy consumption and

cost.

6. AI-Driven Optimization and Automation:

Autonomous Decision-Making: AI

algorithms can autonomously decide when

to offload tasks to the edge or cloud based

on current system performance, data

urgency, and resource availability,

improving overall efficiency.

Self-Optimizing Networks: Edge-cloud

collaboration systems can use machine

learning to predict resource usage patterns,

automatically optimizing task distribution

and energy consumption across all three

layers.

Predictive Maintenance: AI can be used

to predict when hardware in edge or fog

nodes may fail, allowing for proactive

resource allocation to prevent system

downtime.

b. Federated Learning

1. Training AI Models across Distributed Edge

Devices:

Decentralized Model Training: Federated

learning allows AI models to be trained on

distributed datasets located on edge

devices, avoiding the need to centralize

data in a single server.

Efficient Use of Local Data: Each edge

device trains the model locally using its own

data, contributing to a shared global model

without transferring raw data to the cloud.

Collaborative Learning: Multiple devices

collaborate to improve the model’s accuracy

by aggregating updates, leveraging diverse

datasets across distributed systems.

2. Enhancing Privacy:

Data Locality: Sensitive data, such as

medical records or personal user

information, remains on the edge devices,

significantly reducing the risk of data

breaches.

Secure Aggregation: Federated learning

employs techniques like homomorphic

encryption and differential privacy to

securely aggregate model updates, ensuring

that no individual device’s data can be

reconstructed.

Compliance with Privacy Regulations:

Federated learning aligns with privacy laws

such as General Data Protection Regulation

(GDPR) and Health Insurance Portability and

Accountability Act (HIPAA) by keeping

personal data decentralized and within

users’ control.

3. Reducing Bandwidth Usage:

Model Update Transmission: Only model

updates (e.g., gradients or weights) are

transmitted to a central server for

aggregation, instead of raw data, reducing

the volume of data exchanged over the

network.

Edge Device Optimization: By training

locally, federated learning minimizes the

need for frequent data uploads and

downloads, conserving network bandwidth

and reducing latency.

Adaptive Synchronization:

Communication between edge devices and

the central server can be scheduled

intelligently to further optimize bandwidth

usage, such as during off-peak hours or in

batch updates.

4. Improving Resource Efficiency:

Scalable Learning Framework: Federated

learning enables scalable training by

utilizing the idle computational power of

edge devices, reducing the reliance on

centralized cloud infrastructure.

Energy Efficiency: By processing data

locally, edge devices consume less energy

compared to continuously transmitting data

to the cloud for centralized training.

Task Prioritization: Federated learning

frameworks can prioritize resource

allocation for devices with greater

availability or processing power, ensuring

optimal use of distributed resources.

5. Applications in Real-World Scenarios:

Healthcare: Federated learning facilitates

collaborative model training across hospitals

or devices without sharing sensitive patient

data, enabling advancements in medical

research and diagnosis.

Smartphones and IoT: Personalization

features, such as predictive text or

recommendation systems, are trained

locally on users’ devices, enhancing user

experience while preserving privacy.

Autonomous Vehicles: Edge devices in

autonomous vehicles use federated learning

to collaboratively improve navigation, object

detection, and decision-making algorithms,

while keeping location and sensor data

private.

Finance: Federated learning allows

financial institutions to collaboratively

develop fraud detection and risk

assessment models without sharing

proprietary customer data.

c. 6G and Beyond [22, 23]

1. Faster Communication and Enhanced

Connectivity:

Ultra-High Data Speeds: 6G is expected

to deliver data speeds up to 100 times

faster than 5G, enabling seamless

communication for data-intensive

applications such as augmented reality,

virtual reality, and holographic telepresence.

Low Latency: With latencies as low as 1

millisecond or less, 6G will support real-time

applications like autonomous vehicles,

remote surgeries, and industrial automation

with near-instant responsiveness.

Global Coverage: Integration of terrestrial

and satellite networks in 6G will provide

ubiquitous connectivity, even in remote and

underserved areas, ensuring optimal

resource usage across the globe.

2. Advanced Resource Allocation:

AI-Driven Network Management: AI will

dynamically allocate network resources

based on real-time demand, optimizing

bandwidth usage and ensuring high-quality

service delivery.

Network Slicing: 6G networks will support

highly customizable network slices tailored

for specific applications, such as low-latency

gaming or high-reliability industrial

automation, optimizing the use of network

resources.

Spectrum Optimization: Leveraging

higher frequency bands (e.g., terahertz

frequencies), 6G will enhance spectrum

efficiency, enabling better utilization of

available bandwidth and reducing

congestion.

3. Edge-Cloud Integration:

Enhanced Edge Computing: With 6G’s

ultra-fast speeds, edge devices can process

and share data locally with minimal latency,

reducing reliance on centralized cloud

infrastructure.

Collaborative Resource Sharing: 6G will

enable seamless collaboration between

edge, cloud, and fog computing systems,

ensuring that computing tasks are

distributed efficiently based on resource

availability and application requirements.

Smart Energy Allocation: Optimized

energy usage across edge and cloud

systems will ensure sustainable resource

utilization while maintaining high

performance.

4. Support for Emerging Applications:

Extended Reality (XR): 6G will provide the

ultra-fast and low-latency connectivity

needed to support immersive experiences in

XR, enhancing applications in gaming,

education, and training.

Smart Cities and IoT: The massive

machine-type communication capabilities of

6G will optimize resource usage in IoT

ecosystems, including smart grids, traffic

systems, and public safety networks.

Holographic Communication:

Holographic telepresence will become viable

with 6G’s ability to handle vast amounts of

data in real time, revolutionizing remote

collaboration and communication.

5. Sustainability and Green Technology:

Energy-Efficient Networks: 6G will focus

on designing energy-efficient

communication protocols and hardware to

minimize the carbon footprint of wireless

technologies.

Dynamic Power Allocation: AI-driven

systems will adjust power usage

dynamically based on network load,

reducing energy consumption during low-

traffic periods.

Integration with Renewable Energy

Sources: 6G infrastructure will likely

integrate renewable energy sources,

contributing to the sustainability goals of

next-generation networks.

6. Enhanced Security and Privacy:

Quantum Communication Integration:

6G is expected to incorporate quantum

communication technologies for ultra-secure

data transmission, protecting sensitive

information in critical applications.

Decentralized Security Models:

Advanced encryption and blockchain-based

technologies will ensure secure

communication and resource allocation in

6G networks.

Privacy-Preserving Mechanisms: Data

sharing and processing in 6G will leverage

techniques like federated learning and edge-

based data analytics to enhance privacy and

security.

d. Blockchain Integration

1. Decentralized Resource Management:

Distributed Resource Allocation:

Blockchain enables decentralized systems

where edge devices manage resources

collaboratively without relying on a central

authority, ensuring transparency and trust.

Dynamic Task Distribution: Smart

contracts can automate the allocation of

computational tasks among edge devices

based on their availability and capacity,

optimizing the use of distributed resources.

Efficient Resource Sharing: Blockchain

facilitates peer-to-peer resource sharing,

allowing devices to exchange storage,

processing power, and bandwidth

dynamically and securely.

Global Scalability: Decentralized systems

powered by blockchain can scale

seamlessly, making them ideal for

applications in IoT, where devices are widely

distributed.

2. Secure Transactions among Edge Devices

Immutable Ledger: Blockchain ensures

that all transactions between edge devices

are recorded on an immutable ledger,

providing a reliable and tamper-proof record

of resource usage and exchanges.

Trustless Collaboration: Devices can

interact and share resources without

needing prior trust, as blockchain enforces

trust through consensus mechanisms and

cryptographic verification.

Authentication and Authorization:

Blockchain can be used to securely

authenticate and authorize edge devices,

preventing unauthorized access and

enhancing network security.

Secure Payments: Devices can use

cryptocurrency or token-based systems for

automated microtransactions, enabling

seamless payment for resources like

computing power, storage, or energy.

3. Enhanced Privacy and Data Integrity

Decentralized Data Management: Data

collected by edge devices remains

decentralized, reducing the risk of data

breaches and enhancing user privacy.

Data Provenance: Blockchain provides a

transparent history of data generation and

usage, ensuring that data integrity is

maintained and its origin is verifiable.

Privacy-Preserving Mechanisms:

Combining blockchain with advanced

cryptographic techniques like zero-

knowledge proofs allows transactions and

data exchanges to remain private while still

being verifiable.

4. Energy and Cost Efficiency

Incentivized Participation: Blockchain

incentivizes devices to contribute resources

by rewarding them with tokens or credits,

encouraging efficient use of idle resources.

Optimized Consensus Mechanisms: New

blockchain technologies (e.g., proof-of-stake

or proof-of-authority) reduce the energy

costs associated with traditional consensus

methods like proof-of-work, making them

more suitable for edge networks.

Cost-Effective Management: By

eliminating intermediaries in resource

transactions, blockchain reduces operational

costs, making resource optimization more

affordable.

5. Applications in IoT and Edge Computing:

Smart Grids: Blockchain facilitates the

secure and decentralized exchange of

energy among smart grid participants,

optimizing energy distribution and usage.

Healthcare: Blockchain ensures secure

sharing and management of sensitive

healthcare data among IoT devices,

enhancing patient privacy and data

reliability.

Supply Chain Optimization: Blockchain

tracks the movement of goods in real time,

ensuring transparency and optimizing

logistics resources across distributed

networks.

Autonomous Vehicles: Vehicles can

securely exchange data and resources with

other vehicles and infrastructure, enabling

efficient traffic management and navigation.

e. Quantum Computing

1. Quantum Algorithms for Faster

Optimization:

Solving Complex Optimization

Problems: Quantum algorithms, such as

the Quantum Approximate Optimization

Algorithm (QAOA), can solve

combinatorial and resource allocation

problems exponentially faster than classical

algorithms.

Real-Time Decision-Making: Quantum

computing enables rapid processing of vast

amounts of data, making it ideal for

dynamic and time-sensitive resource

optimization, such as traffic management or

supply chain logistics.

Parallel Problem Solving: Quantum

superposition allows multiple solutions to be

evaluated simultaneously, accelerating the

identification of optimal configurations for

resource allocation.

2. Enhanced Efficiency in Resource

Management:

Improved Scheduling: Quantum

algorithms can optimize resource

scheduling, such as allocating computing

power or bandwidth in data centers or edge

networks, with unmatched precision.

Reduced Energy Consumption: By

identifying optimal solutions faster,

quantum computing minimizes

computational overhead, reducing the

energy required for processing large-scale

optimization tasks.

Supply Chain Optimization: Quantum

computing can model and optimize supply

chains more efficiently by analyzing all

variables simultaneously, leading to reduced

costs and delays.

3. Handling Large-Scale Data

Quantum Machine Learning: Integrating

quantum computing with machine learning

models enables faster training and

prediction for resource optimization tasks,

such as predictive maintenance or anomaly

detection.

Scalable Optimization: Quantum systems

can handle the optimization of extremely

large datasets, which are common in IoT,

autonomous systems, and smart cities.

Advanced Simulations: Quantum

computers excel at simulating complex

systems, such as climate models or energy

grids, allowing for precise optimization of

resources within these systems [24–26].

4. Applications in Various Domains:

Smart Cities: Quantum algorithms can

optimize urban infrastructure, such as traffic

flow, energy distribution, and waste

management, in real time, enhancing

efficiency.

Healthcare: Quantum computing can

optimize the allocation of medical resources,

such as hospital beds, equipment, and staff,

especially during emergencies or

pandemics.

Telecommunications: Quantum computing

can optimize network routing, bandwidth

allocation, and spectrum management to

enhance performance and reduce latency.

Finance: Portfolio optimization, risk

assessment, and fraud detection can be

performed faster and more accurately with

quantum algorithms.

5. Addressing Challenges in Quantum

Resource Optimization

Noise and Error Correction: While

quantum systems are prone to errors,

advancements in quantum error correction

are improving the reliability of quantum

optimization solutions.

Hybrid Quantum-Classical Models

Combining quantum computing with

classical systems allows organizations to

leverage the strengths of both, ensuring

practical and scalable resource optimization.

Scalability of Quantum Hardware: As

quantum hardware matures, its capability to

handle larger and more complex

optimization problems will grow, making it a

game-changer for resource management.

6. Potential Transformative Impacts

Disruptive Advancements: Quantum

computing’s ability to solve previously

intractable problems will redefine how

industries approach resource optimization,

unlocking new levels of efficiency and

innovation.

Cross-Industry Benefits: From logistics to

energy, healthcare, and beyond, quantum-

powered optimization will revolutionize

resource allocation strategies across all

major sectors.

Ethical Resource Allocation: Quantum

computing can model fair and equitable

resource distribution strategies, addressing

global challenges like energy scarcity and

resource inequality.

1.6 Conclusion

Resource optimization lies at the heart of fog and edge

computing, serving as the key to meeting the challenges

posed by latency-sensitive, resource-intensive applications.

By bringing computation closer to the data source, these

paradigms reduce latency, improve real-time

responsiveness, and enhance overall performance.

Advanced strategies such as task offloading, load balancing,

and energy-efficient computation ensure that resources are

utilized effectively, minimizing wastage and maximizing

output.

Emerging technologies like AI, blockchain, quantum

computing, and federated learning further elevate the

potential of resource optimization. AI-driven systems enable

dynamic, predictive resource allocation, while blockchain

ensures secure and transparent management in

decentralized environments. Quantum algorithms promise

breakthroughs in solving complex optimization problems,

and federated learning combines privacy with efficiency by

training models across distributed devices without sharing

raw data.

The integration of next-generation wireless technologies,

such as 6G, strengthens resource optimization by enabling

seamless connectivity, faster data transmission, and

intelligent edge-cloud collaboration. Moreover, the emphasis

on energy efficiency and sustainability ensures that fog and

edge systems not only perform better but also contribute to

a greener technological future.

By leveraging these strategies and innovations, fog and

edge computing can achieve unparalleled efficiency,

scalability, and sustainability, making them indispensable in

driving the future of technology and modern applications.

References

1.Soni, P. K., and Dhurwe, H. “Challenges and Open Issues

in Cloud Computing Services.” Advanced Computing

Techniques for Optimization in Cloud, 1st ed., CRC Press

LLC, 2024. Routledge Tylor and Francis Group.

www.routledge.com/Advanced-Computing-Techniques-for-

Optimization-in-Cloud/Madhusudhan-Gupta-

Rawat/p/book/9781032600079⏎

2.Rawat, P. S., and Soni, P. K. “Resource Management in

Cloud Using Nature-Inspired Algorithm.” Advanced

Computing Techniques for Optimization in Cloud, 1st ed.,

CRC Press LLC, 2024. Routledge Tylor and Francis Group.

www.routledge.com/Advanced-Computing-Techniques-for-

http://www.routledge.com/Advanced-Computing-Techniques-for-Optimization-in-Cloud/Madhusudhan-Gupta-Rawat/p/book/9781032600079
http://www.routledge.com/Advanced-Computing-Techniques-for-Optimization-in-Cloud/Madhusudhan-Gupta-Rawat/p/book/9781032600079

Optimization-in-Cloud/Madhusudhan-Gupta-

Rawat/p/book/9781032600079⏎

3.Rawat, P. S., and Soni, P. K. “Efficient Virtual Machine

Allocation Techniques Based on Hybrid Approach.”

Advanced Computing Techniques for Optimization in

Cloud, 1st ed., CRC Press LLC, 2024. Routledge Tylor and

Francis Group. www.routledge.com/Advanced-Computing-

Techniques-for-Optimization-in-Cloud/Madhusudhan-

Gupta-Rawat/p/book/9781032600079

4.Rawat, P. S., and Soni, P. K. “Roles of Soft Computing

Methodologies in Service-Oriented Computing.” Soft

Computing Principles and Integration for Real-Time

Service-Oriented Computing, 1st ed., Auerbach

Publications, 2024, p. 83. www.routledge.com/Soft-

Computing-Principles-and-Integration-for-Real-Time-

Service-Oriented/Gupta-Kumar-Saini-

Zia/p/book/9781032551883

5.Rawat, P. S., and Soni, P. K. “Smart IoT System for

Agricultural Production Improvement and Machine

Learning-Based Prediction.” Soft Computing Principles and

Integration for Real-Time Service-Oriented Computing, 1st

ed., Auerbach Publications, 2024, p. 174.

www.routledge.com/Soft-Computing-Principles-and-

Integration-for-Real-Time-Service-Oriented/Gupta-Kumar-

Saini-Zia/p/book/9781032551883⏎

6.Rawat, P. S., et al. “Landslide Monitoring Using IoT

Systems with Cloud Platform.” 10th IEEE Uttar Pradesh

Section International Conference on Electrical, Electronics

and Computer Engineering (UPCON), 2023. IEEE.

https://ieeexplore.ieee.org/document/10434461⏎

7.Gupta, R., et al. “Resource Optimization in Fog Computing

for IoT Applications.” IEEE Transactions on Industrial

http://www.routledge.com/Advanced-Computing-Techniques-for-Optimization-in-Cloud/Madhusudhan-Gupta-Rawat/p/book/9781032600079
http://www.routledge.com/Advanced-Computing-Techniques-for-Optimization-in-Cloud/Madhusudhan-Gupta-Rawat/p/book/9781032600079
http://www.routledge.com/Soft-Computing-Principles-and-Integration-for-Real-Time-Service-Oriented/Gupta-Kumar-Saini-Zia/p/book/9781032551883
http://www.routledge.com/Soft-Computing-Principles-and-Integration-for-Real-Time-Service-Oriented/Gupta-Kumar-Saini-Zia/p/book/9781032551883
https://ieeexplore.ieee.org/document/10434461

Informatics, vol. 17, no. 3, pp. 2018–2030, 2021.

https://ieeexplore.ieee.org/document/9053761⏎

8.Soni, P. K., and Dhurwe, H. “Introduction to Next

Generation Optimization in Cloud Computing Services.”

Advanced Computing Techniques for Optimization in

Cloud, 1st ed., CRC Press LLC, 2024. Routledge Tylor and

Francis Group. www.routledge.com/Advanced-Computing-

Techniques-for-Optimization-in-Cloud/Madhusudhan-

Gupta-Rawat/p/book/9781032600079⏎

9.Rawat, P. S., Soni, P. K., & Gupta, P. (2024, May).

Performance Analysis of Intelligent Surveillance System in

a Fog Computing Environment. In International

Conference on Data & Information Sciences (pp. 425–

435). Singapore: Springer Nature Singapore.⏎

10.Shi, W., and Dustdar, S. “The Promise of Edge

Computing.” Computer, vol. 49, no. 5, pp. 78–81, 2016.

https://ieeexplore.ieee.org/document/7457397⏎

11.Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. “Fog

Computing and Its Role in the Internet of Things.”

Proceedings of the First Edition of the MCC Workshop on

Mobile Cloud Computing, 2012, pp. 13–16.

https://dl.acm.org/doi/10.1145/2342509.2342513⏎

12.Mustapha, S. D. S., and Gupta, P. “DBSCAN Inspired Task

Scheduling Algorithm for Cloud Infrastructure.” Internet of

Things and Cyber-Physical Systems, vol. 4, pp. 32–39,

2024.⏎

13.Gupta, P., Rawat, P. S., Kumar Saini, D., Vidyarthi, A., and

Alharbi, M. “Neural Network Inspired Differential Evolution

Based Task Scheduling for Cloud Infrastructure.”

Alexandria Engineering Journal, vol. 73, pp. 217–230,

2023.

https://ieeexplore.ieee.org/document/9053761
http://www.routledge.com/Advanced-Computing-Techniques-for-Optimization-in-Cloud/Madhusudhan-Gupta-Rawat/p/book/9781032600079
https://ieeexplore.ieee.org/
https://dl.acm.org/doi/10.1145/2342509.2342513

14.Madhusudhan, H. S., Gupta, P., Saini, D. K., and Tan, Z.

“Dynamic Virtual Machine Allocation in Cloud Computing

Using Elephant Herd Optimization Scheme.” Journal of

Circuits, Systems and Computers, vol. 32, no. 11, Art.

2350188, 2023.

15.Rawat, P. S., Gaur, S., Barthwal, V., Gupta, P., Ghosh, D.,

Gupta, D., and Rodrigues, J. J. C. “Efficient Virtual Machine

Placement in Cloud Computing Environment Using BSO-

ANN Based Hybrid Technique.” Alexandria Engineering

Journal, vol. 110, pp. 145–152, 2025.⏎

16.Mao, Y., You, C., Zhang, J., Huang, K., and Letaief, K. B. “A

Survey on Mobile Edge Computing: The Communication

Perspective.” IEEE Communications Surveys & Tutorials,

vol. 19, no. 4, pp. 2322–2358, 2017.

https://ieeexplore.ieee.org/document/7929965

17.Deng, R., Lu, R., Lai, C., Luan, T. H., and Liang, H.

“Optimal Workload Allocation in Fog-Cloud Computing

Toward Balanced Delay and Power Consumption.” IEEE

Internet of Things Journal, vol. 3, no. 6, pp. 1171–1181,

2016. https://ieeexplore.ieee.org/document/7558165⏎

18.HS, M., and Gupta, P. “Federated Learning Inspired

Antlion Based Orchestration for Edge Computing

Environment.” PLoS One, vol. 19, no. 6, Art. e0304067,

2024.⏎

19.Gupta, P., Anand, A., Agarwal, P., and McArdle, G. “Neural

Network Inspired Efficient Scalable Task Scheduling for

Cloud Infrastructure.” Internet of Things and Cyber-

Physical Systems, vol. 4, pp. 268–279, 2024.

20.Morabito, R., Petrolo, R., Loscrí, V., and Mitton, N.

“LEGIoT: A Lightweight Edge Gateway for the Internet of

Things.” Future Generation Computer Systems, vol. 81,

pp. 1–15, 2018.

https://ieeexplore.ieee.org/document/7929965
https://ieeexplore.ieee.org/document/7558165

www.sciencedirect.com/science/article/pii/S0167739X173

13727⏎

21.Bittencourt, L. F., et al. “The Internet of Things, Fog and

Cloud Continuum: Integration and Challenges.” Internet of

Things, vol. 3, pp. 134–155, 2018.

www.sciencedirect.com/science/article/pii/S25426605183

01197⏎

22.Satyanarayanan, M., et al. “The Role of Edge Computing

in 5G.” IEEE Consumer Electronics Magazine, vol. 9, no. 1,

pp. 24–29, 2020.

https://ieeexplore.ieee.org/document/8955088⏎

23.Dash, S. K., Mohapatra, S., and Pattnaik, P. K. “A Survey

on Applications of Wireless Sensor Network Using Cloud

Computing.” International Journal of Computer Science

and Engineering Survey, vol. 2, no. 1, pp. 37–54, 2011.

https://aircconline.com/ijcses/V2N1/2111ijcses04.pdf⏎

24.Chiang, M., and Zhang, T. “Fog and IoT: An Overview of

Research Opportunities.” IEEE Internet of Things Journal,

vol. 3, no. 6, pp. 854–864, 2016.

https://ieeexplore.ieee.org/document/7553031⏎

25.Premsankar, G., Di Francesco, M., and Taleb, T. “Edge

Computing for the Internet of Things: A Case Study.” IEEE

Internet of Things Journal, vol. 5, no. 2, pp. 1275–1284,

2018. https://ieeexplore.ieee.org/document/8017561

26.Gupta, H., Vahid Dastjerdi, A., Ghosh, S. K., and Buyya,

R. “iFogSim: A Toolkit for Modeling and Simulation of

Resource Management Techniques in the Internet of

Things, Edge and Fog Computing Environments.”

Software: Practice and Experience, vol. 47, no. 9, pp.

1275–1296, 2017.

https://onlinelibrary.wiley.com/doi/full/10.1002/spe.2509⏎

http://www.sciencedirect.com/science/article/pii/S0167739X17313727
http://www.sciencedirect.com/science/article/pii/S2542660518301197
https://ieeexplore.ieee.org/document/8955088
https://aircconline.com/
https://ieeexplore.ieee.org/document/7553031
https://ieeexplore.ieee.org/document/8017561
https://onlinelibrary.wiley.com/doi/full/10.1002/spe.2509

Chapter 2

Artificial Intelligence

Inspired Scheduling in

Edge Computing

Kavitha D. N., Gayana J. Kumar, and

Vedavathi N.

DOI: 10.1201/9781003610168-2

2.1 Introduction

Cloud computing, which is comparatively distant from

Internet of Things (IoT) devices, has struggled in recent

years to accommodate applications with stringent

requirements for mobility or delay, like real-time object

detection and real-time video streaming [1, 2]. These

shortcomings in cloud computing can now be addressed

using the edge computing (EC) paradigm. Mobile users

create tasks in EC, which are then transferred to edge nodes

(edge servers) for processing.

Efficient task scheduling has drawn a lot of interest since

nodes are placed at the periphery of networks with

http://doi.org/10.1201/9781003610168-2

constrained processing power. Significant energy

consumption reductions and an improvement in service

level agreement violations (SLAV) in EC can be

accomplished through effective job scheduling.

Researchers have improved and suggested optimization

techniques based on linear, dynamic, greedy, and other

programming techniques in order to create a better

scheduling approach. Deep reinforcement learning (DRL)-

based optimization techniques have received increased

research interest recently due to the advancement of deep

learning. DRL-based algorithms can obtain a more effective

scheduling approach when compared to conventional

optimization techniques. However, DRL-based algorithms

continue to confront two significant obstacles because of

the intricate EC contexts found in the real world [3, 4].

First, in order to save energy or satisfy processing

requirements, certain nodes in real-world EC scenarios can

be dynamically turned on or turned off. Additionally, there is

a dynamic shift in the quantity of active and pending tasks.

However, the dynamic rise or fall of nodes and jobs is too

much for the DRL-based algorithms that are currently in use.

Thus, a significant difficulty is how to efficiently depict the

dynamic environment in order to adjust to the fluctuation of

nodes and tasks and enhance the scalability of the

algorithm.

Second, genuine EC scenarios involve many diverse

nodes and tasks, whereas existing DRL algorithms presume

an environment with comparatively minor state sets and

action sets. This necessitates handling a lot of data.

Additionally, every task or node has its own properties, such

as tasks with resource requests, allocations, etc., and nodes

with resource abilities, etc.

These lead to dimensional disasters and make it

challenging to store all the data directly. Thus, another

significant difficulty is how to efficiently store all

environmental data, conserve computational power, and

make quick choices.

Techniques for data compression and dimensionality

reduction are required to address the aforementioned

issues. The issue of dimensional disasters can be resolved

and the state of the environment can be effectively

represented by reducing and connecting a high-dimensional

state space to a low-dimensional vector space while also

minimizing the impact on the relationships between the

original data.

To decrease the state dimension of DRL and dynamically

represent the EC environment, representation learning is

presented and enhanced in this study. Similar to vertices

and edges in graphs, relationships and entities are the

primary building blocks of representation learning.

Furthermore, relations are typically understood to be

translations acting on the entities’ low-dimensional

representations.

The entities and relations in EC are initially established

with two levels prior to using representation learning as

shown in Figure 2.1 [5].

https://calibre-pdf-anchor.a/#a123

Figure 2.1 Relationship between tasks and nodes

(two levels).⏎

The first-level entities are the tasks and nodes

themselves, which are propertyless. Regarding the first-level

entities, resource needs describe the relationships among

tasks and their properties, whereas resource usage defines

the relationships between nodes and their properties. Next,

the environment—which comprises the collection of tasks

and nodes—and the tasks and nodes with matching

qualities are designated as the second-level entities.

When a task enters a certain environment, the

relationship among the second-level entities is identified as

the scheduling decision, that is, the relationship is extracted

to obtain the matching node. This approach is highly

scalable because of representation learning, which also

makes it simple to construct various entities and relations

for newly arriving tasks and devices in EC as well as for

device-to-device communications. Vectors and distances

between vectors can then be used to represent the entities

and relationships, respectively.

A new model for representation TransEC, which translates

the EC tasks, nodes, and environment to various vector

subspaces, is presented using the entities and relations

previously mentioned.

In particular, the tasks and nodes are initially embedded

into various sub-spaces using embedding layers. Then, the

potential features of the environment are retrieved using

linear transformations and convolution neural networks, and

the knowledge is mapped to a different sub-space. Lastly,

our TransEC model is used to extract the relationships

between second-level entities.

Scheduling decisions in a dynamic and large-scale EC

environment can be resolved by DRL with the aid of the

TransEC model, which effectively reduces the state

dimension. The Deep Q-Learning (DQL) algorithm is selected

among many DRL algorithms due to its ability to facilitate

quick decision-making.

Additionally, the TransEC-DQL algorithm’s training

frequency is adjusted to account for both the state

information surrounding this time slot as well as the state

knowledge of the present time slot, which involves the

distributions of task and node resource situations. Also

double Q-learning is used to enhance DQL performance

even more [6]. Many similar solutions using hybrid solutions

are proposed in references [7–12].

Literature survey:

The paper “Workflow Makespan Minimization for Partially

Connected Edge Network: A Deep Reinforcement Learning-

Based Approach” [13] takes on the problem of improving

workflow execution in partly connected edge networks by

combining critical path analysis, dynamic task sorting, and a

unique reinforcement learning-based workflow embedding

(RLWE) scheme. By modeling the scheduling process as a

Markov decision process, the technique coordinates task

placement and multipath routing to reduce makespan while

prioritizing path quality and congestion avoidance using a

disjoint subpath selection mechanism. While RLWE

outperforms traditional methods such as DPE, FixDoc, and

HEFT in terms of reducing computational delays and

optimizing resource usage across a wide range of network

configurations and workflows, the study highlights

challenges such as task scheduling and multipath routing

complexity, scalability concerns for hybrid cloud–edge

systems, and limited real-time dynamic congestion

management. Despite these limitations, experimental data

show that RLWE is successful, with considerable makespan

reductions and enhanced resource usage.

The paper “Deep Reinforcement Learning-Based Workload

Scheduling for Edge Computing” [14] proposes a new

technique to optimize workload scheduling in dynamic EC

systems with resource limits and significant unpredictability.

It uses a multi-tier architecture and Deep Q-Networks (DQN)

to balance workloads, improve service time, and reduce the

number of unsuccessful tasks. The technique expresses the

scheduling issue as a Markov Decision Process (MDP), which

includes state and action spaces as well as a reward

function aimed at reducing delays. The DQN model

improves resource allocation decision-making by combining

experience replay with neural networks. Simulations on

EdgeCloudSim indicated that the technique outperformed

alternatives such as Deep Deterministic Policy Gradient

(DDPG) and Proximal Policy Optimization (PPO), notably in

terms of service time, virtual machine usage, and task

failure rates, while preserving efficiency under high device

density. However, the study identifies shortcomings, such as

inadequate scalability to large-scale or hybrid systems,

insufficient modeling of real-time environmental dynamics,

and a lack of attention on energy efficiency. Despite these

constraints, the findings show that the suggested technique

for scheduling edge computing workloads is resilient and

effective.

The article “Resource Scheduling in Edge Computing: A

Survey” [15] examines advances in resource management

within EC settings to meet the rising needs of IoT

applications. It investigates three major topics: compute

offloading, resource allocation, and resource supply in both

centralized and distributed techniques. The study divides

scheduling models into three categories: things–edge,

things–edge–cloud, and edge–edge collaborations. It

investigates binary and partial offloading; resource

allocation strategies for computing, communication, and

storage; and dynamic provisioning methods such as task

assignment and edge resource placement. While

emphasizing the efficacy of these technologies in enhancing

quality of service (QoS) and quality of experience, the study

also finds limitations such as inadequate real-time

adaptation, poor energy efficiency, and scalability issues for

big networks. By combining performance indicators such as

latency, energy usage, and cost, the report emphasizes the

necessity for further research into dynamic, scalable, and

energy-efficient frameworks.

The study “Representation and Reinforcement Learning

for Job Scheduling in Edge Computing” [5] provides a new

framework that combines representation learning with DRL

to address dynamic job scheduling in EC. This approach

addresses difficulties such as dynamic node changes and

dimensional catastrophes by using a TransEC model to

describe entities (tasks and nodes) and their interactions in

a compressed vector space, as well as a TransEC-DQL

algorithm to make scheduling choices. Key approaches

include embedding task and node characteristics in vector

subspaces, using convolutional neural networks to describe

the environment, and using a double Q-learning-based DRL

strategy for scalable, dynamic decision-making.

Experimental results from real-world datasets show that the

methodology outperforms baseline methods in terms of

decreasing energy usage by 18.04% and SLAV by 9.94%.

However, the study reveals opportunities for enhanced

network architectures to boost feature extraction and

scalability even further.

The paper “Multiagent Meta-Reinforcement Learning for

Optimized Task Scheduling in Heterogeneous Edge

Computing Systems” [16] focuses on the challenges of

efficient computation task scheduling in mobile–edge

computing (MEC) environments with resource constraints,

spectrum congestion, and nonstationarity. Using a

multiagent MDP paradigm, the paper defines the problem as

a noncooperative stochastic game and presents a

multiagent proximal policy optimization (PPO) technique for

stationary systems. To increase flexibility and learning

efficiency in nonstationary systems, it presents the

multiagent meta-PPO method based on meta-learning. The

primary approaches include using approximation for state

representation, using local observation-based policy

optimization, and incorporating meta-learning to improve

convergence. The results of the study demonstrate

considerable performance gains in terms of job execution

latency, payment, and queuing delay. The intrinsic

complexity of multiagent coordination in dynamic situations

and delayed learning adaption in conventional approaches

have been identified as problems. The study demonstrates

how the proposed framework outperforms baselines in both

stationary and nonstationary environments.

The survey paper “Machine and Deep Learning for

Resource Allocation in Multi-Access Edge Computing (MEC):

A Survey” [17] presents a detailed review of the use of

machine learning (ML and DL approaches for resource

allocation in MEC systems. The paper focuses on three

major topics: task offloading, task scheduling, and joint

resource allocation, emphasizing the benefits of ML/DL-

enabled mechanisms over traditional heuristic and

optimization approaches. Methodologies include using

reinforcement learning for adaptive task offloading,

convolutional neural networks for feature extraction, and

federated learning for privacy-preserving model training.

The research highlights major problems such as

computational complexity, adaptation to dynamic situations,

and efficient integration of ML/DL models in resource-

constrained MEC devices. The survey results show advances

in latency reduction, energy efficiency, and overall quality of

service. However, there are still shortcomings in areas like

scalability, real-time flexibility, and MEC system

heterogeneity. Future objectives include improving model

optimization, establishing hybrid techniques, and utilizing

new paradigms such as quantum computing for better

resource allocation.

The research paper “Latency-Aware Container Scheduling

in Edge Cluster Upgrades: A Deep Reinforcement Learning

Approach” presents a latency-aware container scheduling

technique that optimizes task allocation during edge cluster

upgrades in MEC. The technique handles issues such as

resource restrictions, geographically scattered nodes, and

the requirement for adaptive scheduling during dynamic

upgrades. Using a policy gradient-based reinforcement

learning (RL) algorithm, the technique includes task and

node properties, including geographic distribution, via a self-

attention-based feature extraction mechanism. The

approach reduces task delay by around 30% as compared to

baseline methods. It addresses holes/gaps in existing

techniques by taking into account node upgrade status,

location information, and long-term optimization.

Evaluations using simulated and real-world data

demonstrate higher performance in connectivity,

computation, and download latency. However, adoption into

systems such as Kubernetes poses integration issues. While

the method requires extensive training data and

computational cost, it is scalable, efficient, and capable of

real-time execution, making it a reliable option for IoT

services in edge contexts [18].

The paper “Improved Double Deep Q Network-Based Task

Scheduling Algorithm in Edge Computing for Makespan

Optimization” presents a task scheduling technique that

uses an upgraded Double Deep Q Network (DDQN) to

optimize makespan in EC settings. It tackles issues such as

work scheduling in dynamic and diverse edge contexts, the

constraints of static scheduling algorithms, and the

inefficiency of classical Q-learning models owing to state

explosion. The process entails splitting the computation of

goal Q-values and action selection over two networks,

creating a novel reward function, and improving experience

replay using a control unit to maximize data consumption.

An enhanced Particle Swarm Optimization (PSO) technique

is utilized to pre-train the evaluation network, provide

starting solutions, and shorten convergence time. The

results of experiments show that the algorithm outperforms

competing techniques, such as First-Come, First-Served

(FCFS), Shortest Job First (SJF), Particle Swarm Optimization

(PSO), Simulated Annealing-PSO (SA-PSO), DDQN, and

classic DDQN, in terms of makespan and load balancing

across a variety of workloads and machine configurations.

While successful, obstacles include the need for significant

training data and the computing needs of reinforcement

learning. The study indicates that the suggested technique

considerably enhances task scheduling performance in EC

and recommends more research into workflow scheduling

[19].

The research paper “Edge Computing Sleep Mode Task

Scheduling Based on Deep Reinforcement Learning” offers a

task scheduling technique for EC systems called Proximal

Policy Optimization Task Scheduling based on Sleep Mode

(PPO-TSSM), which addresses the difficulties of idle energy

consumption and resource limits. The suggested method

maximizes job completion time, energy usage, and meeting

deadlines. Using a sleep-mode-based edge architecture, the

study models task scheduling as an MDP and applies the

PPO algorithm, which incorporates both policy and value

functions. The system constantly switches servers between

active and sleep modes, activating them as tasks come.

Experimental results show that PPO-TSSM decreases energy

consumption by up to 74.76% when compared to systems

without sleep mode, while increasing minimum job

completion time by just 5.33%. In addition, it reduces total

work costs by 39.45% as compared to other baseline

techniques. While sleep mode efficiently reduces idle energy

usage, extra system wake-up times and container

reconfigurations cause modest delays. Future work will

enhance the system by including dynamic network changes

and explicit resource needs. This solution demonstrates

sleep mode’s potential for lowering operational costs and

enhancing scheduling efficiency in EC [20].

The research paper “Dependency-Aware Application

Assigning and Scheduling in Edge Computing” [21] explores

dependency-aware program assignment and scheduling in

EC settings. It identifies issues such as task

interdependence, limited and varied edge resources, and

uneven spatial–temporal distribution of requests. The study

models applications as directed acyclic graphs (DAGs) and

presents Daas, a unique approach for simultaneously

optimizing task assignment and scheduling in an online

setting, solving both NP-hard challenges. Daas uses a

heuristic technique to assess job priority, allocating and

scheduling activities iteratively in order to optimize resource

use and fulfill application deadlines. Key findings show that

Daas allows up to 20% more applications to achieve

deadlines than baseline approaches, with a maximum

improvement of 38% in large-scale cases. Methodological

limitations include a failure to account for storage limits,

real-time unpredictability in computation times, and

simplifications of edge server and base station connections.

Drawbacks include the solution’s heuristic character, which

does not ensure global optimality, as well as computing cost

from iterative optimization. Despite its shortcomings, Daas

offers a useful and efficient framework for managing

dependent applications in dynamic EC settings.

The paper “Deep Reinforcement Learning for Task

Scheduling in Intelligent Building Edge Network” addresses

the shortcomings of standard cloud-based job scheduling,

which suffers with high latency and inefficient resource use

in intelligent building edge networks. To overcome these

issues, the authors suggest a DDQN-based task scheduling

algorithm with an empirical replay mechanism. This strategy

increases scheduling success rates, speeds convergence,

and decreases edge server overhead. The technique

employs a complete framework that includes a user

workload model that processes tasks such as as DAGs to

account for dependencies, an environment model that

replicates real-time resource conditions, and a DRL-based

decision-making agent for dynamic optimization.

Experimental findings show that the algorithm outperforms

previous techniques, with greater scheduling success rates,

lower latency, and better resource usage even as task load

increases. However, the method takes significant training,

incurs computing expense in large-scale applications, and

relies on precise job parameter prediction for optimal

deployment. Overall, this research greatly increases task

scheduling for intelligent building systems by striking a

compromise between performance, efficiency, and energy

savings in EC environments [22].

The paper “Deep Reinforcement Learning Based Task

Scheduling in Edge Computing Networks” focuses on

reducing task scheduling delays in cloud-edge networks,

specifically the nondeterministic polynomial time (NP)-hard

Task Scheduling for Delay Optimization issue. The authors

offer the cloud–edge collaboration scheduling algorithm,

which is based on the Asynchronous Advantage Actor-Critic

(CECS-A3C) DRL architecture. This approach dynamically

distributes resources and optimizes task offloading

decisions, taking into account edge and cloud resource

limits. Unlike existing systems that frequently rely on single-

edge nodes or utilize wasteful experience replay

mechanisms, CECS-A3C uses asynchronous training with

parallel agents, which eliminates the requirement for replay

and improves scalability. Tasks are planned using real-time

status changes to maximize cumulative rewards depending

on task delay sensitivity. Experimental results reveal that

CECS-A3C decreases task delays by 28.3% and 46.1% when

compared to DQN and RL-G algorithms, respectively, while

also attaining faster convergence and improved scalability

under various task loads. However, its dependence on

centralized decision-making may limit scalability in highly

distributed systems, and real-world implementation issues

include unexpected network dynamics and the ability to

collect reliable state information. Overall, the proposed

framework improves scheduling efficiency, resulting in

timely task execution and optimal resource usage in EC

networks [23].

The paper “Deep Reinforcement Learning-Based Approach

for Online Service Placement and Computation Resource

Allocation in Edge Computing” provides an innovative

strategy for optimizing service placement and resource

allocation in 5G-enabled EC systems, with the goal of

minimizing task delay. It handles issues such as dynamic

and unexpected task arrivals, limited edge resources,

service migration overhead, and the interdependence of

placement and resource decisions. The problem is

expressed as an MDP with hybrid discrete-continuous action

spaces, in which latency components (switching, serving,

and offloading) impact the reward function. The proposed

PDQN combines two neural networks—one for optimum

resource allocation and the other for assessing hybrid action

Q-values—and employs techniques such as double-network

topologies and experience replay to improve stability.

Extensive simulations show that the methodology

outperforms baseline approaches in lowering latency across

a variety of system characteristics, including CPU capacity,

service diversity, and storage limits. While the study

findings seem encouraging, there are several limitations,

such as scaling issues, computing cost from reinforcement

learning, and simplified assumptions that may restrict real-

world application. Nonetheless, it demonstrates the utility of

DRL in solving challenging optimization issues in EC systems

[24].

The paper “Deep Reinforcement Learning Algorithms for

Low Latency Edge Computing Systems” investigates the use

of DRL models—Q-Learning, Double Q-Learning, DQN, and

DDQN—to improve resource allocation and task scheduling

in EC settings, with an emphasis on latency reduction. It

solves issues such as task scheduling complexity caused by

diverse resource needs, high latency from extensive task

queues, and the requirement for intelligent decision-making

in dynamic, low-latency environments. Using MDP to

represent the problem, the study demonstrates the

improved performance of DDQN, which separates action

selection and assessment to increase stability and decrease

Q-value overestimations. Neural networks and approaches

such as experience replay are being used to improve

training and decision-making. While Q-Learning and DQN

experience instability and overestimation, DDQN delivers

consistent, efficient resource allocation with a lower average

latency (0.97–1.03 seconds) throughout simulations. The

results show that DDQN can give greater rewards and more

consistent outcomes, making it a viable option for intelligent

EC systems. However, the paper identifies limits such as

scalability issues and the computational complexity of DRL

models, recommending the future inclusion of advanced

algorithms such as dueling DQN for more improvement.

Finally, the article finds that DRL models, particularly DDQN,

greatly improve the performance of edge system [25].

The paper “Decentralized Scheduling for Concurrent Tasks

in Mobile Edge Computing via Deep Reinforcement

Learning” provides a decentralized task scheduling

technique for MEC that reduces latency and lost job ratios in

dynamic, resource-constrained contexts. The paper tackles

issues such as communication costs in centralized

techniques, problems with concurrent job execution, and

heterogeneity edge networks. The proposed technique

treats task offloading as a delay-aware optimization problem

that is solved using DRL. Techniques such as Double DQN,

Dueling DQN, Prioritized Replay Memory, and Recurrent

Neural Networks (RNNs) are used to improve flexibility and

convergence. The Distributed Optimization and Scheduling

Algorithm (DOSA) algorithm divides the DRL network into

user devices and servers, enabling each device to make

autonomous offloading decisions with little computing

complexity. Simulation findings show that DOSA greatly

decreases task delay and drops task ratios when compared

to baseline methods (such as greedy, random, and

centralized DRL approaches). However, disadvantages

include large training costs, difficulty in achieving

convergence in decentralized environments, and a lack of

consideration for real-world complications such as task

dependency graphs and varied server caches. The identified

needs include expanding the model to handle divisible tasks

and using edge service caches to improve scheduling

performance. Despite these constraints, the findings

demonstrate DOSA’s efficiency in balancing scalability and

performance through rapid learning and adaptability to

changing MEC settings[26].

The paper “A Resource-efficient Task Scheduling System

using Reinforcement Learning” describes a novel RL-based

task scheduling system that optimizes resource efficiency in

multi-core CPU scenarios. The suggested methodology

overcomes the limits of classic heuristic-based and

hardcoded scheduling algorithms by adapting to dynamic

computing environments, assuring equivalent or enhanced

performance while drastically decreasing resource

utilization. The RL model approaches the scheduling

problem as an MDP, with states representing system

configurations, actions allocating jobs to workers, and

rewards punishing workload imbalance and excessive data

transmission costs. The scheduler uses a deep Q-learning

algorithm to learn rules that effectively generalize to

previously encountered task graphs, displaying flexibility

across a wide range of configurations. The experimental

findings reveal that the RL-based scheduler reduces active

workers to 7–8 (from 40 in baseline approaches) while

maintaining comparable runtimes, demonstrating

considerable advantages in efficiency and scalability.

However, the technique has disadvantages, including high

initial training costs and gaps, such as a lack of support for

distributed systems and GPU-specific scheduling. Future

work attempts to solve these limitations, making the

architecture more applicable to dispersed and

heterogeneous computing settings [27].

The paper titled “A Request Scheduling Optimization

Mechanism Based on Deep Q-Learning in Edge Computing

Environments” proposes a DRL-based (DQN) technique for

optimizing the scheduling of user requests represented as

DAGs in edge computing settings. The technique seeks to

reduce long-term average system latency and increase job

completion rates by treating the scheduling problem as an

MDP. The system describes states as resource utilization and

task queue statuses, actions as scheduling decisions, and

incentives as penalties for delays and missed deadlines. The

approach uses a deep Q-network, experience replay, and an

ε-greedy policy to learn optimum scheduling strategies over

time. Experimental results show that the DQN mechanism

greatly lowers delay and enhances task completion rates

when compared to a random-based technique, especially at

high request arrival rates. Despite initial training instability

and difficulty in high-dimensional state spaces, the

mechanism achieves near-perfect job completion. However,

shortcomings such as a lack of distributed edge intelligence

and computing cost in real-time settings persist. Future

studies will look at distributed scheduling solutions to

improve decision-making in large-scale edge networks [28].

The paper “Deep Reinforcement Learning Based Delay-

Aware Task Offloading for UAV-Assisted Edge Computing”

describes a unique technique for maximizing job offloading

in multi-access edge computing (MEC) environments that

employs UAV relays. The proposed DDPG-based Task Offload

Policy (DTOP) for mobile terminals reduces energy usage

while meeting delay limitations by utilizing DRL to make

effective offloading decisions. The system represents tasks

as an MDP with continuous state and action spaces, and it

includes a reward function that penalizes energy waste and

task timeouts. A task equalization method guarantees that

Unmanned Aerial Vehicle (UAVs) use resources in a balanced

manner. Simulation findings show that Dynamic Task

Offloading Protocol (DTOP) dramatically decreases energy

usage and task delays when compared to baseline

algorithms, while providing fair resource allocation using

Jain’s fairness index. Despite the initial training complexity

and scalability issues, the system stabilizes quickly. The

paper concludes with potential future paths, such as real-

time implementation, scalability improvements, and

security considerations [29].

The paper “Task Allocation in Industrial Edge Networks

with Particle Swarm Optimization and Deep Reinforcement

Learning” explores job allocation in industrial edge

networks, focusing on energy usage reduction. The authors

present an enhanced integer linear programming (ILP)

model for efficient multi-workflow task allocation, which

improves on previous heuristics. They provide Particle

Swarm Optimization (PSO) and DRL as alternatives that are

tested for scalability and efficiency. The primary issues

include tackling the NP-hard nature of the task allocation

problem, preserving QoS, and dealing with the

computational inefficiencies of ILP in big networks. While

PSO and DRL have shorter execution times than ILP, they

sacrifice accuracy for scalability, with PSO excelling in

smaller issue sizes and DRL doing better in bigger

circumstances. Methodologically, ILP optimizes energy

usage for workloads and network connections within

resource and capacity limits. PSO approximates the answer

with a meta-heuristic technique, whereas DRL uses proximal

policy optimization (PPO) for iterative learning based on

task-node mapping. The results demonstrate that PSO

achieves a median optimality gap of 7.7% but struggles with

bigger issue sizes, whereas DRL provides a lower upper

bound for larger problems and executes quicker, completing

in less than 1 second. Gaps include PSO’s inability to handle

large-scale jobs efficiently and the lack of attention for

heterogeneity in network settings. Future research should

focus on hybrid models that combine PSO accuracy with

DRL scalability [30].

The paper “A Deep Reinforcement Learning-Based Hybrid

Algorithm for Efficient Resource Scheduling in Edge

Computing Environment” offers a hybrid approach that

combines DQN and genetic algorithms (GA) to solve

resource scheduling problems in EC settings. It aims to

reduce application execution time by using DQN to produce

the initial population for GA, improving convergence speed

and optimization efficiency. Subtask dependence, the

unpredictability of GA’s beginning population, and the

inefficiency of classical optimization methods in large-scale,

distributed settings are all potential issues.

Methodologically, the technique represents the scheduling

issue as an MDP, using DQN for learning optimum task

assignments and GA for further refining. Experiments on

real-world workflows (Montage_25, Sipht_60, and

Epigenomics_46) show that DQN_GA outperforms known

techniques such as Heterogeneous Earliest Finish Time

(HEFT), Predict Earliest Finish Time (PEFT), and Genetic

Algorithm (GA) with random initialization, improving

makespan by 5.16% over PEFT and 4.91% over GA. The

findings show faster convergence and greater optimization

quality, however there are certain shortcomings, such as

restricted multi-objective and dynamic case handling. Future

research might investigate multi-objective extensions and

adaptability to dynamic EC settings [31].

The paper “Multi-Resource Interleaving for Task

Scheduling in Cloud-Edge System by Deep Reinforcement

Learning” introduces DeepMIC, a new DRL-based multi-

resource interleaving strategy for improving task scheduling

in cloud–edge computing systems. It solves the problem of

optimizing multi-resource queuing inside a single edge node

to reduce weighted-sum latency. DeepMIC employs a PPO

DRL algorithm to dynamically interleave jobs across diverse

resources, increasing resource utilization and lowering

latency. The dynamic nature of cloud–edge systems creates

challenges such as managing task interdependence,

resource rivalry, and high computational complexity. One

significant disadvantage is that the approach’s efficacy in

multi-objective situations or severe network states requires

additional investigation. Methodologically, the problem is

defined as a hypergraph matching problem, which allows for

efficient task grouping for interleaved execution.

Experiments reveal DeepMIC’s superiority over previous

approaches, with up to 1.67 times higher resource usage

and a 30.9% reduction in average reaction time,

demonstrating its potential to improve the performance of

cloud–edge systems. Future research should focus on

dynamic network circumstances and multi-objective

optimization [32].

2.2 Conclusion

To address work scheduling in EC, we would suggest

combining representation algorithms with reinforcement

learning methods in this chapter. The task scheduling issue

is first developed, along with the definition of EC’s entities

and relationships. The relation computation model is then

suggested when the entities’ EC embeddings have been

defined. Later, a learning method based on DQL has been

presented to train the embedding vectors and make the

decisions about task scheduling. Hence, we can combine

reinforcement learning and representation learning for task

scheduling in EC is this chapter.

References

1.Ananthanarayanan, G., et al., 2017. Real-time video

analytics: The killer app for edge computing. Computer,

50(10), pp. 58–67.⏎

2.Liu, L., Li, H. and Gruteser, M., 2019. Edge assisted real-

time object detection for mobile augmented reality. In

Proceedings of 25th Annual International Conference on

Mobile Computing and Networking (pp. 1–16).⏎

3.Mao, H., Alizadeh, M., Menache, I. and Kandula, S., 2016.

Resource management with deep reinforcement learning.

In Proceedings of 15th ACM Workshop on Hot Topics in

Networks (pp. 50–56).⏎

4.Tan, L. T. and Hu, R. Q., 2018, November. Mobility-aware

edge caching and computing in vehicle networks: A deep

reinforcement learning. IEEE Transactions on Vehicular

Technology, 67(11), pp. 10,190–10,203.⏎

5.Hasselt, H. V., 2010. Double Q-learning. In Proc. Int. Conf.

Neural Inf. Process. Syst. (pp. 2613–2621).⏎

6.Tang, Z., Jia, W., Zhou, X., Yang, W. and You, Y., 2020.

Representation and reinforcement learning for task

scheduling in edge computing. IEEE Transactions on Big

Data, 8(3), pp. 795–808.⏎

7.Mustapha, S. D. S. and Gupta, P., 2024. DBSCAN inspired

task scheduling algorithm for cloud infrastructure.

Internet of Things and Cyber-Physical Systems, 4, pp. 32–

39.⏎

8.Gupta, P., Rawat, P. S., Kumar Saini, D., Vidyarthi, A. and

Alharbi, M., 2023. Neural network inspired differential

evolution based task scheduling for cloud infrastructure.

Alexandria Engineering Journal, 73, pp. 217–230.

9.Madhusudhan, H. S., Gupta, P., Saini, D. K. and Tan, Z.,

2023. Dynamic virtual machine allocation in cloud

computing using elephant herd optimization scheme.

Journal of Circuits, Systems and Computers, 32(11), Art.

2350188.

10.Rawat, P. S., Gaur, S., Barthwal, V., Gupta, P., Ghosh, D.,

Gupta, D. and Rodrigues, J. J. C., 2025. Efficient virtual

machine placement in cloud computing environment

using BSO-ANN based hybrid technique. Alexandria

Engineering Journal, 110, pp. 145–152.

11.HS, M. and Gupta, P., 2024. Federated learning inspired

Antlion based orchestration for Edge computing

environment. PLoS One, 19(6), Art. e0304067.

12.Gupta, P., Anand, A., Agarwal, P. and McArdle, G., 2024.

Neural network inspired efficient scalable task scheduling

for cloud infrastructure. Internet of Things and Cyber-

Physical Systems, 4, pp. 268–279.⏎

13.Zhu, K., Zhang, Z., Sun, F. and Shen, B., 2022. Workflow

makespan minimization for partially connected edge

network: A deep reinforcement learning-based approach.

IEEE Open Journal of the Communications Society, 3, pp.

518–529.⏎

14.Zheng, T., Wan, J., Zhang, J. and Jiang, C., 2022. Deep

reinforcement learning-based workload scheduling for

edge computing. Journal of Cloud Computing, 11(1), p.

3.⏎

15.Luo, Q., Hu, S., Li, C., Li, G. and Shi, W., 2021. Resource

scheduling in edge computing: A survey. IEEE

Communications Surveys & Tutorials, 23(4), pp. 2131–

2165.⏎

16.Niu, L., Chen, X., Zhang, N., Zhu, Y., Yin, R., Wu, C. and

Cao, Y., 2023. Multiagent meta-reinforcement learning for

optimized task scheduling in heterogeneous edge

computing systems. IEEE Internet of Things Journal,

10(12), pp. 10519–10531.⏎

17.Djigal, H., Xu, J., Liu, L. and Zhang, Y., 2022. Machine and

deep learning for resource allocation in multi-access edge

computing: A survey. IEEE Communications Surveys &

Tutorials, 24(4), pp. 2449–2494.⏎

18.Cui, H., Tang, Z., Lou, J., Jia, W. and Zhao, W., 2024.

Latency-aware container scheduling in edge cluster

upgrades: A deep reinforcement learning approach. IEEE

Transactions on Services Computing, 17(5), pp. 2530–

2543.⏎

19.Zeng, L., Liu, Q., Shen, S. and Liu, X., 2023. Improved

double deep Q network-based task scheduling algorithm

in edge computing for Makespan optimization. Tsinghua

Science and Technology, 29(3), pp. 806–817.⏎

20.Tao, S., Zeng, F., Tao, Y., Xia, P. and Liu, T., 2023, August.

Edge computing sleep mode task scheduling based on

deep reinforcement learning. In 2023 9th International

Conference on Big Data Computing and Communications

(BigCom) (pp. 231–239). IEEE.⏎

21.Liao, H., Li, X., Guo, D., Kang, W. and Li, J., 2021.

Dependency-aware application assigning and scheduling

in edge computing. IEEE Internet of Things Journal, 9(6),

pp. 4451–4463.⏎

22.Chen, Y., Wang, Y., Zhang, Z., Fu, Q., Wang, H. and Lu, Y.,

2022, November. Deep reinforcement learning for task

scheduling in intelligent building edge network. In 2022

Tenth International Conference on Advanced Cloud and

Big Data (CBD) (pp. 312–317). IEEE.⏎

23.Qi, F. A. N., Zhuo, L. and Xin, C., 2020, August. Deep

reinforcement learning based task scheduling in edge

computing networks. In 2020 IEEE/CIC International

Conference on Communications in China (ICCC) (pp. 835–

840). IEEE.⏎

24.Liu, T., Ni, S., Li, X., Zhu, Y., Kong, L. and Yang, Y., 2022.

Deep reinforcement learning based approach for online

service placement and computation resource allocation in

edge computing. IEEE Transactions on Mobile Computing,

22(7), pp. 3870–3881.⏎

25.Kumaran, K. and Sasikala, E., 2023, March. Deep

reinforcement learning algorithms for low latency edge

computing systems. In 2023 3rd International conference

on Artificial Intelligence and Signal Processing (AISP) (pp.

1–5). IEEE.⏎

26.Fan, Y., Ge, J., Zhang, S., Wu, J. and Luo, B., 2023.

Decentralized scheduling for concurrent tasks in mobile

edge computing via deep reinforcement learning. IEEE

Transactions on Mobile Computing, 23(4), pp. 2765–

2779.⏎

27.Morchdi, C., Chiu, C. H., Zhou, Y. and Huang, T. W., 2024,

January. A resource-efficient task scheduling system using

reinforcement learning. In 2024 29th Asia and South

Pacific Design Automation Conference (ASP-DAC) (pp. 89–

95). IEEE.⏎

28.Zhang, Y., Li, R., Zhao, Y. and Li, R., 2021, May. A request

scheduling optimization mechanism based on deep Q-

learning in edge computing environments. In IEEE

INFOCOM 2021-IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS) (pp. 1–

2). IEEE.⏎

29.Huang, M., Sun, K., Hou, Y., Ye, Z., Wan, Y. and He, H.,

2022, December. Deep reinforcement learning based

delay-aware task offloading for UAV-assisted edge

computing. In (pp. 1–8).⏎

30.Buschmann, P., Shorim, M. H., Helm, M. Proceedings of

the 2022 5th International Conference on Algorithms,

Computing and Artificial Intelligence, Bröring, A. and

Carle, G., 2022, November. Task allocation in industrial

edge networks with particle swarm optimization and deep

reinforcement learning. In Proceedings of the 12th

International Conference on the Internet of Things (pp.

239–247).⏎

31.Xue, F., Hai, Q., Dong, T., Cui, Z. and Gong, Y., 2022. A

deep reinforcement learning based hybrid algorithm for

efficient resource scheduling in edge computing

environment. Information Sciences, 608, pp. 362–374.⏎

32.Pei, X., Sun, P., Hu, Y., Li, D., Tian, L. and Li, Z., 2024.

Multi-resource interleaving for task scheduling in cloud-

edge system by deep reinforcement learning. Future

Generation Computer Systems, 160(November), pp. 522–

536.⏎

Chapter 3

Supervised Machine

Learning for Load

Balancing in Fog

Environments

Priyanshi Mishra and Yash Jain

DOI: 10.1201/9781003610168-3

3.1 Introduction

Fog computing has emerged as a transformative paradigm

that bridges the gap between centralized cloud services and

edge devices, such as Internet of Things (IoT) sensors,

mobile devices, and industrial systems. Unlike traditional

cloud computing, which centralizes computation and

storage, fog computing decentralizes these processes,

bringing them closer to data sources. This architectural shift

offers significant benefits, including reduced latency,

enhanced data security, and improved system efficiency.

However, it also introduces unique challenges, particularly

http://doi.org/10.1201/9781003610168-3

in managing workload distribution across heterogeneous

and dynamic fog nodes.

Effective load balancing is critical in fog environments to

optimize resource utilization, minimize delays, and prevent

system failures. Supervised machine learning (ML) provides

powerful tools to address these challenges by leveraging

historical data to predict and adapt to workload variations in

real time. This chapter explores the integration of

supervised ML techniques in load balancing for fog

computing, discussing their methodologies, applications,

and future directions. This exploration includes an expanded

focus on real-world applications, advanced ML techniques,

and the challenges that researchers and practitioners face

today.

3.2 Fog Computing: An Overview

Fog computing extends cloud capabilities by positioning

computational resources closer to the edge, reducing the

distance data needs to travel. This approach addresses

several key issues in modern distributed systems:

1. Reduced Latency: Fog computing processes data

locally, significantly reducing response times. This

capability is vital for latency-sensitive applications such

as autonomous vehicles, healthcare monitoring, and

real-time video streaming. For instance, autonomous

cars rely on instant decision-making to ensure

passenger safety—a requirement that centralized cloud

systems cannot meet [1].

A case study involving autonomous vehicles highlights that

processing sensor data within milliseconds can prevent

accidents and improve traffic efficiency. Traditional cloud

solutions fail to meet such stringent latency demands,

showcasing the necessity of localized fog computing [2].

1. Enhanced Security: By processing sensitive data

locally, fog computing minimizes risks associated with

data transmission, such as interception or unauthorized

access. This is particularly crucial for industries

handling sensitive information, such as healthcare and

finance [3].

Moreover, compliance with data sovereignty laws, which

require sensitive data to remain within specific geographic

boundaries, becomes more manageable with fog computing.

Enhanced security fosters trust in applications like remote

health monitoring and financial transactions [4].

1. Scalability: Fog computing’s distributed nature

supports the scalability required for the rapidly growing

number of IoT devices. The architecture allows

horizontal scaling, accommodating diverse workloads

and increasing the system’s overall capacity [5].

Scalability enables seamless management of diverse and

complex tasks, such as those in smart grids and industrial

IoT systems, where millions of sensors interact in real time

[6].

Despite these advantages, fog computing introduces

challenges such as heterogeneous resource management,

dynamic workloads, and real-time processing demands.

Load balancing plays a pivotal role in addressing these

challenges to ensure consistent performance and reliability.

3.3 Supervised Machine Learning (SML) Basics

SML is a type of ML where the model is trained on labeled

data, meaning that each input in the training dataset has a

corresponding output or label. This type of learning is called

“supervised” because the algorithm learns from the training

data that includes both the input features and the correct

output, essentially guiding the model to make predictions.

[7–9]

Core Concepts of Supervised Learning

1. Labeled Data: In supervised learning, the dataset is

made up of pairs of input data and corresponding

output labels. For example, in a classification task, the

input could be an image, and the output label could be

the object in the image (such as “cat” or “dog”). In a

regression task, the input might be historical data, and

the output could be a continuous value, such as a stock

price or temperature.

2. Training: During training, an ML model learns a

mapping from input features to the correct output

labels. The model tries to minimize the difference

between its predictions and the actual output by

adjusting its internal parameters. This process is done

iteratively, using optimization techniques like gradient

descent, where the model fine-tunes itself by reducing

the error over multiple iterations.

3. Testing: After training, the model is evaluated using a

testing dataset, which contains labeled data that it has

not seen during training. This helps assess how well the

model generalizes to new, unseen data. The

performance of the model is measured using different

metrics, depending on whether the task is classification

or regression.

Supervised Learning Algorithms

Supervised learning encompasses several types of

algorithms, each suited for different tasks, such as

classification or regression.

1. Classification Algorithms: These algorithms are used

when the output label is a categorical value. The goal

is to assign an input to one of several predefined

categories. Examples of classification algorithms

include:

Decision Trees: A tree-like structure where each

node represents a decision based on a feature,

and each branch represents a possible outcome.

The model makes predictions by traversing the

tree from root to leaf.

Support Vector Machines (SVM): SVMs aim to

find the hyperplane that best separates the data

points of different classes. It tries to maximize the

margin between the closest data points of each

class, known as the support vectors.

K-Nearest Neighbors (KNN): KNN is a simple

algorithm where the model classifies an input by

looking at the “K” closest labeled data points and

assigning the most common label among them.

Logistic Regression: Despite the name, logistic

regression is a classification algorithm used for

binary classification tasks. It calculates the

probability of the input belonging to a particular

class based on a linear combination of input

features.

2. Regression Algorithms: These algorithms are used

when the output is a continuous value. The model tries

to predict a numeric value based on input features.

Examples of regression algorithms include:

Linear Regression: One of the simplest

algorithms, linear regression models the

relationship between input features and output as

a straight line. It predicts a continuous value by

finding the best-fit line through the data points.

Decision Trees for Regression: Similar to

decision trees for classification, but in regression,

each leaf represents a predicted continuous value,

not a class label.

Support Vector Regression (SVR): Similar to

SVM, but SVR is designed for regression tasks. It

tries to find a hyperplane that best fits the data

points within a certain margin of tolerance.

Random Forests: A collection of decision trees,

each built on random subsets of the training data.

In regression, the prediction is made by averaging

the outputs of all the trees in the forest.

Evaluation Metrics in Supervised Learning

To assess the performance of a model, various evaluation

metrics are used. These metrics help determine how well

the model generalizes to unseen data.

1. For Classification Tasks

Accuracy: The fraction of correctly predicted

labels out of the total number of predictions. It is

commonly used but can be misleading if the

classes are imbalanced.

Precision: The fraction of true positive

predictions (correctly predicted positive class) out

of all positive predictions (true positives + false

positives). It measures the accuracy of positive

predictions.

Recall (Sensitivity): The fraction of true

positives out of all actual positives (true positives

+ false negatives). It measures how well the

model captures all positive cases.

F1 Score: The harmonic mean of precision and

recall. It is useful when you need a balance

between precision and recall, especially in

imbalanced datasets.

Confusion Matrix: A table used to evaluate the

performance of a classification model. It

summarizes the correct and incorrect predictions

for each class.

2. For Regression Tasks

Mean Absolute Error (MAE): The average of the

absolute differences between predicted and actual

values. It gives a sense of the average error in the

predictions.

Mean Squared Error (MSE): Similar to MAE but

squares the differences before averaging them.

This gives more weight to larger errors, making

MSE more sensitive to outliers.

Root Mean Squared Error (RMSE): The square

root of the MSE, which brings the error measure

back to the original scale of the data.

R-squared: A measure of how well the model

explains the variance in the data. It indicates the

proportion of the variance in the dependent

variable that is predictable from the independent

variables.

Overfitting and Underfitting

Two common challenges in supervised learning are

overfitting and underfitting.

Overfitting: Occurs when the model learns too much

from the training data, including noise and irrelevant

patterns. As a result, it performs very well on the

training data but poorly on unseen test data.

Overfitting can be mitigated by using regularization

techniques, cross-validation, and ensuring that the

model is not overly complex for the available data.

Underfitting: Happens when the model is too simple

to capture the underlying patterns in the data. It leads

to poor performance on both the training and test data.

Underfitting can be addressed by increasing model

complexity, using more relevant features, or reducing

regularization.

Training, Validation, and Test Datasets

The typical workflow in supervised learning involves splitting

the data into three sets:

Training Dataset: Used to train the model, allowing it

to learn from the input–output pairs.

Validation Dataset: Used to tune hyperparameters

and validate the model’s performance during the

training phase. This helps in model selection.

Test Dataset: Used to evaluate the final model’s

performance after training is complete. It provides an

unbiased estimate of the model’s generalization ability.

Overview of Load Balancing

Load balancing is a crucial concept in distributed systems

and networks that involves distributing incoming network

traffic or computational tasks across multiple resources,

such as servers, network links, or processing units. The goal

of load balancing is to optimize the utilization of resources,

improve the response time, and ensure that no single

resource is overwhelmed with too much work. In the context

of computing, load balancing is often used to enhance the

availability, reliability, and performance of systems,

particularly in large-scale distributed environments where

resources are spread across multiple nodes or data centers.

The concept of load balancing becomes particularly

important in scenarios where high availability and fault

tolerance are critical. These scenarios include cloud

computing, web servers, content delivery networks (CDNs),

and even fog computing systems, where distributed

resources must work together to provide seamless service

to end users. Load balancing allows these systems to scale

efficiently by ensuring that workloads are shared evenly and

that no single node or resource becomes a bottleneck.

Types of Load Balancing

1. Network Load Balancing: In network load balancing,

the aim is to distribute incoming network traffic evenly

across a group of servers or devices to ensure optimal

network performance and prevent overload on a single

device. This type of load balancing is most commonly

used in web servers, application servers, and even in

telecommunications systems. By distributing requests

based on various algorithms, network load balancers

help reduce the possibility of a single server or network

link becoming overwhelmed, which can lead to service

disruptions or slow response times.

2. Task Load Balancing: Task load balancing, also

known as computational or application-level load

balancing, refers to the allocation of computational

tasks to different resources or nodes in a system. This

type of load balancing is typically applied in scenarios

like parallel computing, where a large number of small

tasks need to be distributed across a set of processors.

The goal is to minimize idle time on the processors and

achieve a more efficient computation by ensuring that

each processor or computing node is assigned a task

that can be processed in parallel with others. Task load

balancing can be found in distributed computing

environments like high-performance computing

systems or cloud-based environments.

3. Global Load Balancing: Global load balancing refers

to the process of distributing traffic or computational

tasks across multiple data centers or geographical

regions. It helps ensure that users access the most

responsive server or application, depending on their

location, load conditions, and availability. Global load

balancing can leverage geolocation-based routing,

which directs users to the closest data center or the

one with the lowest load. It is typically used in large-

scale web applications, CDNs, and enterprise systems

that operate in multiple regions.

4. Local Load Balancing: Local load balancing is

concerned with distributing traffic or tasks across

resources within a single data center or server farm. It

aims to optimize resource utilization within the

localized infrastructure and ensure that no single

server becomes a bottleneck. Local load balancing can

be handled by software or hardware appliances and is

typically used in situations where the traffic or tasks

are concentrated within a specific physical or logical

location.

Common Load Balancing Algorithms

Several algorithms are commonly used for load balancing,

each with its own advantages and trade-offs. These

algorithms are designed to determine how incoming

requests or tasks should be distributed to various resources.

Some of the most widely used load balancing algorithms

include:

1. Round Robin: Round robin is one of the simplest and

most widely used load balancing algorithms. It works

by assigning requests or tasks to the next server in a

cyclic manner, regardless of the server’s current load.

The simplicity of this approach makes it easy to

implement, but it may not always achieve optimal

performance, especially in systems where servers have

different processing capacities or where traffic patterns

are not uniform.

2. Least Connections: The Least Connections algorithm

directs new incoming requests to the server that has

the fewest active connections or tasks. This approach

is beneficial when server load is highly variable, as it

aims to balance the number of concurrent connections

across the available servers. This method can help

prevent servers from becoming overloaded with too

many tasks, but it requires that the load balancer has

real-time access to server connection counts.

3. Weighted Round Robin: Weighted round robin is an

extension of the basic round robin algorithm that takes

server capacities into account. In this algorithm, each

server is assigned a weight based on its processing

power, and the load balancer distributes requests

according to these weights. For example, a server with

a higher weight will receive more requests than a

server with a lower weight. This approach ensures that

more powerful servers handle a greater portion of the

traffic, leading to a more balanced and efficient

system.

4. Least Response Time: In the Least Response Time

algorithm, new requests are sent to the server with the

shortest response time. This method is particularly

useful when servers are highly variable in performance,

as it ensures that users are directed to the fastest and

most responsive resources. However, this algorithm

may not always be effective if there is high variability

in server response times due to factors such as

network congestion or external system dependencies.

5. Hash-Based Load Balancing: Hash-based load

balancing involves distributing requests based on a

hash function, typically applied to a specific parameter

in the request, such as the IP address or session ID.

This approach ensures that requests with the same

hash value are sent to the same server, which can be

helpful for session persistence or maintaining stateful

interactions. While it can lead to uneven distribution if

the data is skewed, it is effective for systems that

require session affinity or where a particular server

needs to handle specific requests consistently.

6. Dynamic Load Balancing: Dynamic load balancing

involves adjusting the distribution of requests or tasks

based on real-time feedback, such as server load,

resource availability, or network conditions. This type

of load balancing is adaptive and continuously

responds to changing conditions within the system,

making it more suitable for environments with

fluctuating or unpredictable workloads. Dynamic load

balancing typically requires more sophisticated

algorithms and systems that can monitor and analyze

system performance in real time.

Challenges of Load Balancing

While load balancing offers significant benefits, it also

comes with its own set of challenges. These challenges arise

from the complexity of managing distributed systems,

maintaining high availability, and ensuring optimal resource

utilization.

1. Scalability: Load balancing must be able to scale

effectively as the number of resources or requests

grows. Systems need to be designed to handle an

increasing number of servers or tasks without

introducing performance bottlenecks or delays in

request handling.

2. Fault Tolerance: Load balancers must be able to

handle failures gracefully. When a server or resource

goes down, the load balancer should automatically

reroute traffic to available servers, ensuring minimal

disruption to the end user. Implementing fault

tolerance requires monitoring health and performance

metrics of all servers in real time.

3. Traffic Distribution: Distributing traffic efficiently is a

critical challenge, especially in heterogeneous systems

where resources may have different processing

capabilities. Load balancing algorithms must take into

account the varying capabilities of different servers to

avoid overloading less powerful resources.

4. Latency and Response Time: The speed and

responsiveness of load balancing decisions can

significantly impact the overall system performance.

Load balancers must make decisions quickly to ensure

low latency and avoid delays in processing requests.

High-latency decisions can lead to performance

degradation and a poor user experience.

5. Security: Security is another challenge in load

balancing, particularly in cloud-based or web

applications. Load balancers must ensure that they are

protected from threats such as Distributed Denial of

Service attacks, which could overwhelm the load

balancing system itself. Ensuring that traffic is routed

to secure and trusted resources is critical for

maintaining system integrity.

Load Balancing in Fog Computing

Load balancing refers to the even distribution of

computational tasks across available resources. In fog

environments, load balancing must account for:

Heterogeneous Resources: Fog nodes vary in

computational power, memory, and network bandwidth

[7].

Dynamic Workloads: IoT devices generate

fluctuating workloads, requiring adaptive strategies [8].

Static Load Balancing

Static techniques assign tasks based on predefined rules,

such as:

Round Robin: Tasks are distributed cyclically among

nodes [9].

Weighted Round Robin: Nodes with higher

capacities receive more tasks [10].

While simple and easy to implement, static methods lack

flexibility to adapt to real-time changes, potentially leading

to inefficiencies under variable workloads. For example, in a

healthcare monitoring network, static allocation might

overload nodes monitoring critical patients, jeopardizing

timely data processing [11].

Dynamic Load Balancing

Dynamic methods consider real-time metrics like CPU

usage, memory, and network latency. Examples include:

Least Connection Method: Allocates tasks to nodes

with the fewest active connections [12].

Least Response Time Method: Prioritizes nodes with

the shortest response times [13].

These methods require continuous monitoring and

computational overhead but significantly improve

adaptability and efficiency. For instance, real-time traffic

management in smart cities can benefit from these methods

by dynamically redirecting resources to congested areas

[14].

Predictive Analytics and ML Integration

Dynamic methods can be enhanced by integrating

predictive analytics through supervised ML. These models

can forecast workload spikes and anticipate resource

requirements, enabling proactive task redistribution [15].

Supervised Machine Learning for Load Balancing

Supervised ML involves training models on labeled datasets

to make predictions. In fog environments, such models can

predict workload patterns and resource availability, enabling

proactive task allocation.

Implementation Steps

1. Data Collection: Gather metrics such as CPU usage,

memory consumption, and network latency from fog

nodes. This data forms the foundation for training ML

models. Techniques like IoT data logging and real-time

monitoring frameworks (e.g., MQTT) can facilitate

comprehensive data collection [16].

2. Feature Engineering: Identify and preprocess key

features, such as workload intensity and network

conditions, ensuring that models focus on critical

parameters. Advanced feature selection methods like

principal component analysis (PCA) can reduce

dimensionality while preserving essential data

characteristics [17].

3. Model Selection

Regression models (e.g., linear regression) predict

workloads [18].

Classification models (e.g., decision trees)

categorize tasks based on resource requirements

[19].

For example, Random Forest models have been

shown to outperform simpler algorithms in

workload prediction scenarios due to their ability

to handle complex interactions [20–24].

4. Model Training and Evaluation: Train models on

historical data, evaluating them using metrics like

accuracy, precision, and recall. Cross-validation

ensures robust performance. Hyperparameter tuning

using techniques like grid search can optimize model

accuracy [21, 31–34].

5. Deployment and Continuous Learning: Deploy

trained models in real-time environments, continuously

updating them to adapt to evolving workloads.

Lightweight frameworks like TensorFlow Lite enable

efficient deployment on resource-constrained fog

nodes [22].

Advanced Techniques

Ensemble Learning: Combines multiple models for

improved accuracy and robustness (e.g., Random

Forests) [23].

Deep Learning: LSTMs and CNNs capture temporal

and spatial patterns, enhancing prediction capabilities

in complex environments [24].

Reinforcement Learning: Complements supervised

learning by optimizing load balancing policies based on

feedback mechanisms [25].

Supervised Learning Models for Load Balancing

Supervised learning models are a subset of ML techniques

that leverage labeled datasets to train algorithms, enabling

them to make predictions or decisions based on input

features. In the context of load balancing, supervised

learning can be used to predict optimal resource allocation,

task distribution, or traffic management strategies based on

historical data. The ability to learn from past patterns and

adapt to new, unseen data is particularly beneficial for load

balancing in complex, dynamic environments such as cloud

computing, fog computing, and web applications, where

network traffic and workloads can fluctuate in real time.

How Supervised Learning Enhances Load Balancing

Traditional load balancing techniques, such as round robin,

least connections, and random distribution, use fixed rules

or simple heuristics to allocate resources. While these

methods are effective in some contexts, they often fail to

account for complex patterns and changing conditions, such

as varying server performance, fluctuating network traffic,

and the dynamic availability of resources. Supervised

learning models, on the other hand, can be trained on

historical data to recognize patterns and make data-driven

decisions, providing several advantages:

1. Adaptability: Supervised learning models can adapt

to changing traffic conditions and server loads. By

learning from past data, these models can identify

trends and predict future resource demands, allowing

them to dynamically adjust load balancing decisions in

real time.

2. Precision: Unlike static methods, supervised learning

models can identify subtle patterns that may not be

obvious to rule-based systems. For example, models

can recognize correlations between server performance

and incoming traffic patterns, leading to more efficient

resource allocation.

3. Predictive Capabilities: Supervised learning models

can predict when specific resources (e.g., servers and

network links) will become overloaded, enabling

proactive load balancing decisions that prevent

performance degradation or system failures before

they occur.

4. Optimization: By continuously learning from new

data, supervised learning models can optimize load

balancing over time, making better decisions as more

training data becomes available, leading to improved

overall system performance.

Key Steps for Implementing Supervised Learning in Load

Balancing

To apply supervised learning to load balancing, the following

steps are typically involved:

1. Data Collection and Preprocessing: The first step in

applying supervised learning to load balancing is to

collect relevant data from the system. This data

typically includes metrics such as:

Server load (e.g., CPU, memory, and disk

utilization)

Network traffic volume

Response time and latency

Server health and availability

Historical load balancing decisions (e.g., resource

allocation decisions and task assignments)

The data is then preprocessed to ensure it is

clean, structured, and ready for training. This may

involve removing duplicates, handling missing

values, and normalizing the data to ensure

consistency and accuracy.

2. Feature Selection: Selecting the right features is

crucial for the success of supervised learning models.

In the context of load balancing, important features

might include:

Current server load (e.g., CPU usage and memory

consumption)

Incoming request rate (e.g., number of incoming

network packets per second)

Previous server performance data (e.g., average

response time and task completion time)

Resource utilization patterns (e.g., memory usage

over time)

Network conditions (e.g., bandwidth usage and

packet loss rate)

Choosing the appropriate features helps the

model learn patterns that are most relevant to

optimizing load balancing decisions.

3. Model Training: Once the data is prepared and

features are selected, the next step is to train a

supervised learning model. The model learns from the

labeled data, where the input features (e.g., server

load and network traffic) are mapped to the

corresponding output labels (e.g., which server should

handle the next request). Some of the commonly used

supervised learning algorithms for load balancing

include:

Linear Regression: This algorithm can be used

for predicting continuous values, such as the

expected load on a server based on historical

data. It models the relationship between input

features and server load to provide predictions for

optimal resource allocation.

Decision Trees: Decision trees split data into

subsets based on feature values and can be used

to make load balancing decisions based on factors

like server load and network conditions. They are

easy to interpret and can handle both numerical

and categorical data.

Random Forests: Random forests are an

ensemble method that builds multiple decision

trees and combines their predictions. They are

more robust than individual decision trees and can

handle complex relationships between features.

Support Vector Machines: SVM can be used for

classification tasks in load balancing, such as

determining which server should handle an

incoming request. It finds the optimal boundary

(hyperplane) that separates data points from

different classes, ensuring the best allocation

decisions.

K-Nearest Neighbors: KNN can be used to

classify new requests based on their similarity to

historical data. For load balancing, it can predict

which server is likely to be the best match for

handling a new request, based on past requests

with similar features.

4. Model Evaluation and Testing: After training the

model, it is important to evaluate its performance

using a separate testing dataset. The testing data

should not overlap with the training data to ensure that

the model generalizes well to new, unseen instances.

Various metrics are used to evaluate the performance

of supervised learning models, depending on the type

of task:

For regression tasks (e.g., predicting server

load), metrics such as MSE or R-squared are

commonly used.

For classification tasks (e.g., choosing which

server to handle a request), metrics like accuracy,

precision, recall, and F1 score are often used.

By evaluating the model’s performance, we can

identify areas for improvement and fine-tune the

model, such as adjusting hyperparameters or

incorporating additional features.

5. Deployment and Real-Time Predictions: Once the

model is trained and evaluated, it is deployed in the

load balancing system for real-time predictions. The

model continuously receives data from the system

(e.g., server load and traffic patterns) and makes

predictions about which resources should handle

incoming tasks. These predictions are used to inform

load balancing decisions, ensuring that the system

remains efficient and responsive under varying

conditions.

The model can be updated periodically with new data to

improve its performance and adapt to changes in the

system over time. This continuous learning approach

ensures that the load balancing mechanism evolves as the

system scales or undergoes changes in usage patterns.

Benefits of Using Supervised Learning for Load Balancing

1. Dynamic and Adaptive Load Balancing: Supervised

learning models can adjust to dynamic changes in

traffic patterns, server performance, and network

conditions. By learning from historical data, these

models can predict future load scenarios and adjust

resource allocation accordingly, ensuring that

resources are efficiently utilized.

2. Improved Resource Utilization: By using supervised

learning to make data-driven decisions, load balancing

can be more efficient, reducing the chances of

overloading specific resources. Models can predict

which servers are underutilized and shift load

accordingly, maximizing the overall efficiency of the

system.

3. Proactive Fault Management: Supervised learning

models can help predict potential server failures or

performance degradation based on historical data. This

proactive approach enables the system to reroute

traffic before a failure occurs, reducing downtime and

improving system reliability.

4. Scalability: Supervised learning models can scale to

handle increasing amounts of data, making them

suitable for large-scale distributed systems. As the

system grows, the model can learn from new data,

adapting to the increasing complexity and providing

accurate load balancing decisions.

5. Optimized Response Times: By accurately

predicting the load distribution and traffic patterns,

supervised learning models can reduce response times

for users. By ensuring that the most capable resources

are handling incoming requests, the system can

provide quicker responses, improving the overall user

experience.

3.4 Challenges and Considerations

While supervised learning provides many benefits for load

balancing, there are several challenges to consider:

1. Data Quality and Availability: The performance of

supervised learning models depends on the quality and

quantity of historical data. If the data is noisy,

incomplete, or not representative of real-world

conditions, the model’s predictions may be inaccurate,

leading to poor load balancing decisions.

2. Model Complexity: Supervised learning models,

especially complex ones like deep learning models or

ensemble methods, may require significant

computational resources for training and deployment.

This can introduce overhead, especially in real-time

systems where low latency is critical.

3. Overfitting: Overfitting occurs when the model learns

to perform well on the training data but fails to

generalize to new, unseen data. Regularization

techniques and cross-validation are necessary to

prevent overfitting and ensure the model’s robustness.

4. Dynamic Environment: Load balancing in dynamic

environments, such as cloud or fog computing,

presents a challenge for supervised learning models, as

the system’s state can change rapidly. To address this,

models need to be retrained periodically or use

techniques like online learning to adapt to new data

without retraining from scratch.

3.5 Mathematical Formulations for Load

Balancing

To better understand the principles of load balancing,

consider:

1. Load Estimation Formula:

Li=α×CPUi+β×Memi+γ×NetiL_i = \α \times CPU_i + \β

\times Mem_i + \γ \times Net_i

where:

LiL_i: Load on node ii

CPUiCPU_i: CPU utilization of node ii

MemiMem_i: Memory usage of node ii

NetiNet_i: Network bandwidth usage of node ii

α,β,γ Weight coefficients.

2. Optimization Problem:

min⁡∑i=1N(LiCi)\min \sum_{i=1}^{N} \left(\frac{L_i}

{C_i}\right)

Subject to:

∑i=1NLi≤Total Load Capacity \sum_{i=1}^{N} L_i

\leq \text{Total Load Capacity}

Li≥0L_i \geq 0

These formulas help for designing algorithms that could

optimize resource usage while preventing overloading.

3.6 Applications and Case Studies

1. Smart Cities: Predictive ML models optimize traffic

flow and resource allocation, improving urban

infrastructure efficiency. For instance, congestion

prediction algorithms dynamically adjust traffic light

timings to reduce delays [26].

2. Healthcare: Models forecast workload spikes in

wearable device networks, ensuring timely processing

of patient data. In critical care scenarios, such models

prioritize resource allocation to nodes handling

emergency data streams [27].

3. Industrial IoT: Supervisory control systems

dynamically allocate tasks across machines, reducing

downtime and boosting productivity. Predictive

maintenance models use sensor data to preemptively

address potential failures, minimizing production

disruptions [28].

4. Agriculture: IoT-enabled smart farms use fog nodes to

monitor soil conditions and weather patterns. ML

models predict irrigation needs, ensuring efficient

water use and optimal crop growth [29].

5. Disaster Management: In disaster-prone areas, fog

networks facilitate real-time monitoring and

communication. Predictive ML models detect early

warning signs, enabling proactive measures to mitigate

risks [30].

3.7 Challenges and Future Directions

3.7.1 Challenges

Data Quality and Volume: High-quality, labeled

datasets are essential for training effective models.

Addressing noisy or incomplete data remains a

significant challenge [31].

Real-time Adaptation: Ensuring low-latency

predictions in dynamic environments [32].

Resource Constraints: Balancing ML computational

overhead with limited fog node resources [33].

Ethical Concerns: Privacy and data security issues in

ML-driven systems require robust governance

frameworks [34].

3.7.2 Future Research Directions

1. Federated Reinforcement Learning: Integrating

federated learning with reinforcement strategies can

enable decentralized, privacy-preserving decision-

making in fog networks [35].

2. Blockchain Integration: Using blockchain for secure

and transparent data sharing among fog nodes can

enhance trust and system reliability [36].

3. Multi-objective Optimization: Incorporate trade-offs

between latency, energy efficiency, and QoS in load

balancing algorithms for holistic improvements [37].

4. AI-Driven Resilience Models: Develop AI systems

that predict and adapt to node failures, ensuring

uninterrupted service delivery [38].

5. Green Computing: Prioritize energy-efficient

algorithms to reduce the environmental footprint of

large-scale fog networks [39].

3.8 Conclusion

Supervised ML offers robust solutions to the complex load

balancing challenges in fog environments. By leveraging

predictive analytics and adaptive strategies, these models

enhance resource utilization, system reliability, and user

experience. As fog computing evolves, integrating advanced

ML techniques will play a pivotal role in addressing future

challenges and unlocking the full potential of distributed

computing systems.

References

1.Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog

Computing and its role in the Internet of Things.

Proceedings of the First Edition of the MCC Workshop on

Mobile Cloud Computing.⏎

2.Madsen, H., Albeanu, G., Popentiu-Vladicescu, F., & Zhang,

Z. (2013). Reliability in the Utility Computing era: Towards

reliable Fog Computing. International Conference on

Systems, Signals, and Image Processing.⏎

3.Breiman, L. (2001). Random Forests. Machine Learning.⏎

4.Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep

Learning. MIT Press.⏎

5.Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., & Duchesnay, E. (2011). Scikit-

learn: Machine learning in Python. Journal of Machine

Learning Research, 12, 2825–2830.⏎

6.Abawajy, J., & Hassan, M. M. (2019). Machine Learning for

Fog Computing: Principles and Applications. Springer. Vol.

1, pp. 1–23.⏎

7.Singh, S., & Chana, I. (2016). QoS-aware autonomic

resource management in Cloud Computing: A systematic

review. ACM Computing Surveys, (3), 1–46.⏎

8.Li, W., & Liu, J. (2015). Reinforcement learning for

dynamic resource optimization in Fog Computing. Journal

of Parallel and Distributed Computing, 25, 1–23.⏎

9.Alsadie, D. (2024). Artificial intelligence techniques for

securing Fog Computing environments: Trends,

challenges, and future directions. IEEE Access, 12,

151598–151648.⏎

10.Mastorakis, G., Mavromoustakis, C. X., Batalla, J. M., &

Pallis, E. (Eds.). (2020). Convergence of artificial

intelligence and the Internet of Things. Cham,

Switzerland: Springer International Publishing, pp. 1–9.⏎

11.Islam, M. S. U., Kumar, A., & Hu, Y. C. (2021). Context-

aware scheduling in Fog computing: A survey, taxonomy,

challenges and future directions. Journal of Network and

Computer Applications, 180, 103008.⏎

12.Lin, Z., Lu, L., Shuai, J., Zhao, H., & Shahidinejad, A.

(2023). An efficient and autonomous planning scheme for

deploying IoT services in fog computing: A metaheuristic-

based approach. IEEE Transactions on Computational

Social Systems, 11(1), 1415–1429.⏎

13.Heilig, L., Lalla-Ruiz, E., Voß, S., & Buyya, R. (2018).

Metaheuristics in cloud computing. Software: Practice and

Experience, 48, 1729–1733.⏎

14 Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R. H.,

Morrow, M. J., & Polakos, P. A. (2017). A comprehensive

survey on fog computing: State-of-the-art and research

challenges. IEEE Communications Surveys & Tutorials, 20,

416–464.⏎

15.Gupta, H., Vahid, D., & Goudar, R. H. (2019). Resource

allocation challenges in Fog Computing: A review. Journal

of Cloud Computing, 12, 1–23.⏎

16.Chollet, F. (2018). Deep Learning with Python. Manning

Publications, Vol. 1, pp. 1–55.⏎

17.Real, Esteban et al. (2020). AutoML-Zero: Evolving

machine learning algorithms from scratch. International

Conference on Machine Learning, 1, 1–9.⏎

18.Aggarwal, C. C. (2018). Neural Networks and Deep

Learning. Cambridge International Law Journal.⏎

19.Khan, L. U., Yaqoob, I., Tran, N. H., Kazmi, S. M. A., Dang,

T. N., & Hong, C. S. (2020, Oct). Edge-Computing-Enabled

Smart Cities: A Comprehensive Survey. IEEE Internet of

Things Journal, 7(10), 10200–10232. doi:

10.1109/JIOT.2020.2987070.⏎

20.Raafat, H. M., Hossain, M. S., Essa, E., Elmougy, S., Tolba,

A. S., Muhammad, G., & Ghoneim, A. (2017). Fog

intelligence for real-time IoT sensor data analytics. IEEE

Access, 5, 24062–24069.⏎

21.Xiao, Y., & Krunz, M. (2021). AdaptiveFog: A modelling

and optimization framework for fog computing in

intelligent transportation systems. IEEE Transactions on

Mobile Computing, 21(12), 4187–4200.⏎

22. Mchergui, A., Hajlaoui, R., Moulahi, T., Alabdulatif, A., &

Lorenz, P. (2024). Steam computing paradigm: Cross-layer

solutions over cloud, fog, and edge computing. IET

Wireless Sensor Systems, 14(5), 157–180.⏎

23. He, J., Wei, J., Chen, K., Tang, Z., Zhou, Y., & Zhang, Y.

(2017). Multitier fog computing with large-scale IoT data

analytics for smart cities. IEEE Internet of Things Journal,

5(2), 677–686.⏎

24. Alam, S., Shuaib, M., Ahmad, S., Jayakody, D. N. K.,

Muthanna, A., Bharany, S., & Elgendy, I. A. (2022).

Blockchain-based solutions supporting reliable healthcare

for fog computing and Internet of medical things (IoMT)

integration. Sustainability, 14(22), 15312.⏎

25. Vankayalapati, R. K. (2020). Green Cloud Computing:

Strategies for Building Sustainable Data Center

Ecosystems. SSRN 5079773.⏎

26.Alpaydin, E. (2020). Introduction to Machine Learning

(4th ed.). MIT Press, Vol. 1, no. 1, p. 712.⏎

27.Bishop, C. M. (2006). Pattern Recognition and Machine

Learning. Springer, Vol. 1, no. 1, p. 778.⏎

28.Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep

Learning. MIT Press, Vol. 1, no. 1, p. 219.⏎

http://dx.doi.org/10.1109/JIOT.2020.2987070

29.Hastie, T., Tibshirani, R., & Friedman, J. (2009). The

Elements of Statistical Learning: Data Mining, Inference,

and Prediction (2nd ed.). Springer.⏎

30.Sokolova, M., & Lapalme, G. (2009). A systematic

analysis of performance measures for classification tasks.

Information Processing & Management, 45(4), 427–437.⏎

31.Mustapha, S. D. S., & Gupta, P. (2024). DBSCAN inspired

task scheduling algorithm for cloud infrastructure.

Internet of Things and Cyber-Physical Systems, 4, 32–

39.⏎

32.Gupta, P., Rawat, P. S., kumar Saini, D., Vidyarthi, A., &

Alharbi, M. (2023). Neural network inspired differential

evolution based task scheduling for cloud infrastructure.

Alexandria Engineering Journal, 73, 217–230.⏎

33.Madhusudhan, H. S., Gupta, P., Saini, D. K., & Tan, Z.

(2023). Dynamic virtual machine allocation in cloud

computing using elephant herd optimization scheme.

Journal of Circuits, Systems and Computers, 32(11),

2350188.⏎

34.Rawat, P. S., Gaur, S., Barthwal, V., Gupta, P., Ghosh, D.,

Gupta, D., & Rodrigues, J. J. C. (2025). Efficient virtual

machine placement in cloud computing environment

using BSO-ANN based hybrid technique. Alexandria

Engineering Journal, 110, 145–152.⏎

Chapter 4

Blockchain-Based Secure

Data Sharing System in

Fog–Edge System

Harshitha Kamal Kannan

DOI: 10.1201/9781003610168-4

4.1 Introduction

With the rise of technology in all the domains such as

healthcare, industry and agriculture sector with internet of

things (IoT), data generation has become huge. It is

important to store the data in an efficient manner and to

build a network with low latency, high bandwidth

specifications and high security. The traditional system fails

to provide all the requirements of the specifications [1]. To

overcome these challenges, we adopt blockchain-based fog–

edge computing systems. This is a critical issue as the data

is decentralized and shared among multiple devices and

edge nodes and ensuring integrity, access control and

confidentiality is a challenge.

http://doi.org/10.1201/9781003610168-4

Fog computing provides a decentralized architecture

which extends to cloud by inculcating the storage, data

processing and analytics close to the source of data such as

edge devices and IoT devices instead of transmitting the

data to the cloud through the gateways [2]. Intermediate

fog layer exists between the cloud and the devices to bring

out improvements in efficiency and to reduce latency and

bandwidth constraints connected with the network, thereby

allowing better usage of resources and faster decision-

making. The fog computing functions as follows: after the

devices generate the data, the nearby fog nodes analyze

and filter the data. Next, if any real-time action is required,

fog executes it based on the defined rules. Critical data and

long-term data are transmitted to the cloud for in-depth

analysis, complex computations and storage [3].

Edge computing on the other hand processes and stores

the data at the network’s edge where the data is generated

and consumed. This enables faster decision-making and

quicker real-time analysis, thereby reducing the latency. It

also leads to lower bandwidth consumption. Edge

computing involves devices like gateways, edge servers, IoT

sensors and mobile devices. Only the critical data and the

data that needs more processing like advanced analytics

and deep learning models are sent to the cloud [4]. The

future of edge computing involves AI-powered edge

analytics involving real-time image recognition and

predictive analytics. Edge computing as services allows

businesses to leverage edge computing resources without

major infrastructure investments. Edge computing

integrated with blockchain forms a tamper-proof network

and enhances data authentication and integration.

Blockchain provides high security, transparency and

decentralization, making it an important component in the

digital economy. It provides distributed ledger which is

digital by nature. It involves hash functions and records the

hash function of the previous block. It also maintains the

timestamp of all the transactions. After a transaction is

initiated, a peer-to-peer network between nodes is initiated.

Then, the Proof of Work or Proof of Stake is used to verify

the consensus mechanism [5]. Upon, the validation it is

grouped with the blocks in the blockchain network. All the

transactions are permanent and immutable, ensuring

consistency and transparency.

Hence, combining the three technologies gives an

efficient solution to the modern data problems.

4.2 Review of Literature

The authors in [6] propose lightweight shared validation

conventions for IoT frameworks utilizing actual unclonable

capabilities. Two conventions are presented: one for secure

correspondence between two IoT gadgets and the other for

correspondence between an IoT gadget and a server. The

proposed plot gives different safety efforts for various

ongoing applications regarding calculation, energy and

other continuous boundaries. For large-scale IoT

deployments, verifying IoT clients poses significant technical

challenges. In any case, blockchain technology gives a

decentralized trust model where each IoT client can be

verified without depending on the focal power [7].

Elliptic bend cryptography (ECC) has ended up being an

effective method; furthermore, it is efficient for verification

in different applications, particularly in asset-obliged

conditions like IoT and remote sensor networks. In [8], the

authors proposed a lightweight and secure authentication

strategy utilizing ECC explicitly intended for the client

passage (U-GW) IoT network model. This technique is

pivotal for guaranteeing secure correspondence in asset-

compelled conditions run of the mill of IoT gadgets.

This approach uses a conveyed record to keep up with

network data safely while guaranteeing common

authentication among vehicles and road side units (RSUs) in

vehicular haze figuring climate. The proposed conspire

results uncover that it improves security highlights as well

as decreases computational and communicational

overheads, making it a practical choice for genuine world

applications [9, 10].

In [11], the authors proposed a two-factor RSA-based

authentication convention for multiserver conditions. The

exhaustive examination and reproduction results prove its

adequacy against various security threats while keeping up

with low computational overheads.

The proposed convention utilizes a blend of passwords

and shrewd cards, alongside the RSA cryptosystem [12].

According to the authors it addresses known security issues,

upholds meeting key arrangement, and guarantees common

validation between the client and the application server. The

accuracy of common verification and the newness of the

meeting key are additionally approved utilizing the Boycott

rationale model [13].

All things considered, the outstanding constraints of their

work include recollecting the passwords, dealing with the

conveyance of brilliant cards in enormous scope

frameworks. ECC has been proved to be an effective

method; besides, robust reply for confirmation across

various applications, particularly in asset-obliged conditions

like IoT and remote sensor networks [14, 15].

In [16], the authors have proposed a book validation and

key-trade conspire that influences blockchain innovation

and ECC. This approach uses a conveyed record to keep up

with network data safely while guaranteeing common

authentication among vehicles and road side units (RSUs) in

vehicular haze figuring climate. The proposed conspire

results uncover that it improves security highlights as well

as decreases computational and communicational

overheads, making it a practical choice for genuine world

applications [17, 18].

They actually address known security dangers, upholds

meeting key arrangement, and guarantees common

validation between the client and the application server

[19]. The accuracy of common verification and the newness

of the meeting key are additionally approved utilizing the

Boycott rationale model. All things considered, the

outstanding constraint of their work is recollecting the

passwords, dealing with the conveyance of brilliant cards in

enormous scope frameworks with numerous servers.

In [20], the authors proposed a lightweight and security

safeguarding two-factor confirmation conspire explicitly

intended for Internet of Things (IoT) gadgets. The proposed

conspire is demonstrated to be efficient against different

types of assaults, including physical and cloning assaults.

However, the prominent impediment is that the conspire

depends largely on the viability of Physical Unclonable

Functions (PUFs) as a subsequent confirmation factor. If the

PUFs do not perform dependably because of ecological

factors or assembling irregularities, the general security of

the validation cycle may be compromised [21].

4.3 Methodology

Blockchain-based secure data sharing systems enhance

security, efficiency and privacy in data exchange nodes.

Traditional cloud-based approaches face challenges such as

high latency, vulnerability and inefficient resource

utilization, which are overcome by blockchain approaches.

This section gives an overview of systems deployed using

blockchain in fog–edge computing.

Blockchain can be used with IoT applications. The

suggested framework encompasses various stages, such as

device configuration, enrollment, verification, key exchange

and preservation with data retrieval stage. As the data

generates from the IoT devices, it must be safeguard and

the integrity and security of data transactions has to be

preserved. Merkle tree-based data integrity is deployed for

this purpose. Elliptic curve Diffie–Hellman, which is a hybrid

encryption method, is utilized for data encryption and

decryption. A case study of electronic healthcare record

(EHR) of a hospital secured with the help of blockchain is

considered.

As the number of cardiovascular diseases is increasing,

an IoT wearable device is attached to the patient to

continuously monitor the electrocardiogram (ECG). It

collects the data and transmits heart rate and rhythm data

for the cloud, which is centralized, for real-time analysis by

various doctors. The system uses fog-assisted EHR which

uses blockchain technology that integrates all kinds of IoT

sensors and systems to monitor and analyze the collected

data. It processes the ECG data at the edge of the network.

Figure 4.1 shows the architecture of the system. The entities

involved are hospital, fog gateway, fog node, distributed

blockchain-based storage and medical specialist.

https://calibre-pdf-anchor.a/#a325

Figure 4.1 Blockchain-enabled fog-assisted smart

healthcare system.⏎

Model generates the threats such as data integrity

attacks in fog-enabled systems to protect the intruders from

false readings and altering vital signs which can mislead the

medical decisions. It also prevents data confidentiality

attack to protect patient’s privacy data and also prevents

unauthorized access to the patient’s data, and the

authentication is given only to doctors, healthcare devices

and nurses.

The IoT nodes form a network to communicate the data

for sharing among each other in a network. Two software

agents are deployed at the fog: one is used to form and

monitor the network and the other is used to establish

communication among the devices. Before adding a new

device to the network, approval is taken from the connected

network and then the device is added.

The IoT node generates the data and stores it in the form

of the block. The blockchain network contains the hash

value of the previous block and the current block; SHA 256

is used for hashing. Each block contains the timestamp of

when it is added, and the block sizes are predefined. Proof

of Work, which checks whether the user is trying to interfere

with the block, needs to be checked by the IoT device and

must be verified before a block is added to the blockchain.

SAN is responsible for the peer-to-peer networking of IoT

devices, which is meant to support data sharing. To ensure

the security, the following steps are followed: a group key is

generated, AES is used to share securely and secure hash

algorithm (SHA) is used for finding the hash value. Figure

4.2 shows the architecture of the system.

https://calibre-pdf-anchor.a/#a328

Figure 4.2 System model.⏎

A blockchain-based information-centric network

computing in cloud, edge and fog services can be designed

based on decentralized and secure data sharing

environment which increases the efficiency of cloud

services. The defined architecture has three layers, namely,

an application layer which provides the interface to the end

users, a blockchain layer that provides data security and a

network layer that provides routing services.

This system provides improved security, efficiency and

transparency when compared to the traditional cloud

system. The integration of the whole system depends on the

smart contracts, which also provides the automation of the

services. In fog computing, most of the work is carried out

on the edge devices which focus on computation of data

storage. Usually, edge devices are often limited in power

and memory.

The impact of blockchain on information-centric storage

which includes the IoT devices, cloud computing provides an

overall security of the systems. Another impact is that it

gives rise to business models, which helps to monetize the

data that generates revenue for organizations and

individuals.

Some of the limitations of these networks are that they

use large number of blocks for transactions which cause the

system to slow down and cause latency. Another limitation

is that interoperability between different systems leads to

security concerns.

Next, the blockchain-based edge computation can also be

used in the industrial networks. Industry 4.0 requires edge-

based distributed resources for maintaining the real-time

industrial processes. It uses multi-access edge computing

and 5G technology to provide high performance to the

localized applications.

The proposed work consists of three parts: IoT edge

network, fog networks and cloud networks integrated with

the blockchain services. The case study discusses the use of

smart building construction that involves various

contractors and sub-contractors. The builder further

allocates various tasks of the contractors. The main

requirement of the use case is that it requires low latency

services, trusted data sharing, optimized scalability, secure

process monitoring, secure offloading and authenticated

access control.

The various elements used here are different types of IoT

nodes available at the local device level. Next, there are IoT

clusters which include sub-contractors who provide services

according to the agreement. The edge nodes have a greater

number of resources when compared to other nodes of the

network. The system uses a lightweight blockchain model

for data sharing. The fog nodes have more capability for

processing data when compared to other nodes. It makes

use of centralized cloud for storage. Figure 4.3 shows the

architecture of the system.

Figure 4.3 Architecture of smart building use case.⏎

Another system uses Hyperledger fabric to track the hash

values of medical data. These values are calculated by

using the SHA256 algorithm to define the authentication of

data. Hyperledger fabric is based on blockchain systems

which open-source and use plug and play components. This

Hyperledger fabric along with consensus upholds the

company data in protection mode. This also supports peer-

to-peer network and maintains a common ledger to record

transactions.

The architecture comprises three layers: smart contracts,

consensus and a distributed ledger. The fog layer acts as a

https://calibre-pdf-anchor.a/#a332

connecting layer between the end user and cloud layer and

supports distributed computing to link peripheral nodes to

the cloud. The fog layer processes the data at the data

sourcing nodes to reduce the bandwidth. It is also

connected with the Hyperledger fabric. Figure 4.4 shows the

architecture of the system. The hash value is computed in

the cloud and compared with the values of the ledger.

Figure 4.4 Integration of fog computing with

Hyperledger.⏎

The flow of the system is as follows: first, the fog collects

the data from the IoT devices. Next, the hash value is

computed at the fog and compared with the Hyperledger

along with which the original data is transmitted to the

cloud. Next, the cloud computes the hash value of the data

and compares with the value of Hyperledger. If both values

match, then no tampering of data has occurred.

https://calibre-pdf-anchor.a/#a334

The model exhibits a storage overhead involving

additional costs because of generation of private keys.

The next concern is about enabling the fog resources

access to the services. Considering the Bitcoin system, a

blockchain system is developed to maintain the distributed

database that records all the blocks using data structures to

prevent the data from tampering.

A smart contract is a software that facilitates the

agreement between untrusted parties as they do not rely on

the third party to operate. When smart contracts are used

with fog resources, they provide decentralized

authentication and granting resources for each node. The

subscriber accesses the resource by decrypting the access

key.

The smart contract is dynamically deployed for resource

granting. Several Go-Ethereum clients together form a

blockchain and transfer the devices into Ethereum nodes.

Figure 4.5 shows the structure of the contract built on this

concept. A caller sends a few digital coins to the provider to

fulfill the agreement, then the secret code is generated

automatically, which is then encrypted with the caller’s

address. The executor’s signature is taken when the

contract performance is confirmed.

Figure 4.5 Fog agent deployed on access device.⏎

https://calibre-pdf-anchor.a/#a338

The next system describes fake new detection in the

mobile edge computing. The system collects data from

social media platforms over various phones and detects

fake data. This system also uses Natural Language

Procession (NLP) approaches to build specific number of

words.

The system is built on three layers: an edge layer to

process the social media news, and to transfer to the next

layer using Transmission Control Protocol (TCP). The next

layer is the server layer which receives the messages from

the source layer. The third layer is the edge layer and

offloading which uses NLP techniques to determine the fake

data. The technique used here removes the punctuation in

order to recognize the words. Lastly, it is sent to the cloud

which has the pre-trained BERT (Bidirectional Encoder

Representations from Transformers) model to detect fake

news and original news. The architecture is shown in Figure

4.6.

Figure 4.6 EdgeFNF system architecture.⏎

A Fog Chain model can be deployed for personal health

records which integrate IoT and blockchain. Fog computing

binds the blockchain layer and IoT layer. The latency and

network congestion issues in IoT and the Internet of Health

Things (IoHT) are overcome in this system. The real-time

https://calibre-pdf-anchor.a/#a341

data processing is enabled by FogChain. This model

upgrades the IoHT and blockchain integration which reduces

the latency at the edge. The model also focuses on securing

the personal health record safer storage. Figure 4.7 shows

the model.

Figure 4.7 FogChain visualization.⏎

The four main components of the architecture are as

follows: The first layer is the IoHT layer which provides

interaction among the devices and supporting protocols for

interoperability. It also supports Wireless sensor network

(WSNs) which has low storage capacity. The communication

protocols also include Hypertext Transfer Protocol (HTTP),

Constrained Application Protocol (CoAP) and Message

Queuing Telemetry Transport (MQTT).

The second layer in the architecture is the fog layer,

which has the technology for scaling solutions for computing

and is able to providescalability. It deals with validating and

filtering the data and also deals with communication

https://calibre-pdf-anchor.a/#a343

protocols, which constitute the microservices of the model.

It acts as an entry point and uses Apache Kafka for

establishing publisher subscriber framework.

The third layer is the blockchain peers that form a

consortium network for securing data. It mainly supports

data storage and follows standard data formats. It supports

blockchain inside the fog instances to overcome the

overloading of CPU storage capacity. The consensus is a

multiple-step approach that notifies the ledger updates once

the process is complete.

The last layer is smart contracts which contain the

protocols and programs stored in the blockchain, which has

the ability to track the agreements among the parties.

These smart contracts are executed in the background

automatically. It also triggers the alerts or notification at the

patient’s end.

The next discussion is about heterogeneous,

interoperable and distributed architecture (HIDRA) for fog

and edge computing environments. It is designed for

resource management in fog computing environments. The

architecture involves a group of heterogeneous devices

which cover an area such as a building. Each cluster runs on

a blockchain service. Each node monitors its own resources

such as CPU usage. Other nodes can also exchange their

usage and establish communication among themselves.

The architecture contains three layers: the first one is the

device layer, which contains the IoT devices, and the second

layer is the distributed fog layer, which comes close to IoT

devices. This layer is close to the edge to facilitate the

devices with scalability and reliability. These nodes are

connected by blockchain technology and also establish

peer-to-peer network. The use of smart contracts ensures

that every node is equally involved in the network. Also, fog

uses operating system (OS) virtualization to automate the

deployment of applications.

The network maintains a distributed registry to store the

logs of all the applications that were running. It includes the

IP address and port with the resource specification needed

to run it. The system involves a monitor and a manager. The

monitor checks the state of each node in the cluster and

alerts the manager in case of policy discrepancies, while the

manager checks the working of virtualization in the system.

The system architecture is shown in Figure 4.8.

Figure 4.8 System model using HIDRA.⏎

The next system model depicts the blockchain chain

system with fault tolerance for IoT devices with fog

https://calibre-pdf-anchor.a/#a348

computing. The architecture contains six entities: The first

one is the data owner, who defines the access policy and

manages the registration of devices in the network.

The second entity is the user who requests certain

requests from the IoT network who is also responsible for

encryption and obtains the authorized token if the

transaction is valid through smart contracts.

The third entity is the blockchain to store the policies of

the network and manage the fog nodes. All activities are

managed in a decentralized manner in the network.

The fourth entity includes the fog nodes which provide

the fog services and virtualization to reduce the latency and

to improve the quality of services provided by the system.

The fifth entity includes the IoT devices, where each

device is mapped to fog nodes to check for fault tolerance,

with limited processing capacity.

Lastly, the cloud represents the sixth entity which

aggregates the data from the fog nodes.

The system works as follows: first, the data owner

associates with the blockchain by providing the key

authentication and converts the encryption to smart

contracts policies. Next, the IoT devices get registered in the

network. Next, a user process is submitted to generate a

request, which is redirected to blockchain to check for the

validity of the request. The system contains the load

balancing mechanism to use the resources in an efficient

way. Load balancing is carried out by using min-min

algorithm. The system prevents attacks such as Man-in-the-

Middle, replay and DDoS attack. The overall architecture of

the system is shown in Figure 4.9.

https://calibre-pdf-anchor.a/#a350

Figure 4.9 System architecture with fault tolerance.⏎

4.4 Conclusion

The integration of blockchain with fog–edge computing

gives a comprehensive approach to obtain decentralized

and efficient data sharing in the IoT environments.

Traditional cloud systems exhibit limitations such as security

vulnerabilities, centralized points of failure, bandwidth

limitations and latency. These blockchain-enabled systems

show a scope of improvement in all the drawbacks of

traditional systems. In this chapter, we investigate how

blockchain innovates with a decentralized approach and

gives a designed answer for securing the information. We

inspect architectural frameworks, consensus algorithms,

security mechanisms and smart contracts functionalities for

real-world applications. Blockchain strengths data security

in Fog-environments, enabling trusted and tamper-proof

data exchanges among the IoT nodes.

References

1.Hemant Kumar Apat, and Bibhudatta Sahoo, “A

Blockchain Assisted Fog Computing for Secure Distributed

Storage System for IoT Applications”, Journal of Industrial

Information Integration, 42, 100–739, 2024.⏎

2.Debasis Mohapatra, Sourav Kumar Bhoi, Kalyan Kumar

Jena, Soumya Ranjan Nayak, and Akansha Singh, “A

Blockchain Security Scheme to Support Fog-Based

Internet of Things”, Microprocessors and Microsystems,

89, 104455, 2022.⏎

3.Pranav Zambre, Mitali Panchal, and Ankit Chouhan,

“Blockchain Unleashed: Empowering Information-centric

Network Computing in Cloud, Fog and Edge Service”, In

2023 14th International Conference on Computing

Communication and Networking Technologies (ICCCNT),

pp. 1–6, IEEE, 2023.⏎

4.Manish Kumar Gupta, and Rajendra Kumar Dwivedi,

“Blockchain-Based Secure and Efficient Scheme for

Medical Data”, EAI Endorsed Transactions, 10(5), 2023.⏎

5.Gang Liu, Jinsong Wu, and Ting Wang, “Blockchain-

Enabled Fog Resource Access and Granting, Intelligent

and Converged Networks. Intelligent and Converged

Networks, 2(2), 108–114, 2021.⏎

6.M.N. Aman, K.C. Chua, and B. Sikdar, “Mutual

Authentication in IoT Systems Using Physical Unclonable

Functions”, IEEE Internet of Things Journal, 4(5), 1327–

1340, 2017.⏎

7.Sawsan Alzubi, and Feras M. Awaysheh, “EdgeFNF: Toward

Real-Time Fake News Detection on Mobile Edge

Computing”, In 2022 Seventh International Conference on

Fog and Mobile Edge Computing (FMEC), pp. 1–3. IEEE,

2022.⏎

8.C. Patel, “Secure Lightweight Authentication for Multi User

IoT Environment”, arXiv preprint arXiv:2207.10353,

2022.⏎

9.André Henrique Mayer, Vinicius Facco Rodrigues, Cristiano

André Da Costa, Rodrigo Da Rosa Righi, Alex Roehrs, and

Rodolfo Stoffel Antunes, “FogChain: A Fog Computing

Architecture Integrating Blockchain and Internet of Things

for Personal Health Records”, IEEE Access, 9, 122723–

122737, 2021.⏎

10.Carlos Nunez-Gomez, Carmen Carrion, and Blanca

Caminero, “HIDRA: A Distributed Blockchain-Based

Architecture for Fog/Edge Computing Environments”, IEEE

Access, 9, 75231–75251, 2021.⏎

11.Ruhul Amin, S.K. Hafizul Islam, Muhammad Khurram

Khan, Arijit Karati, Debasis Giri, and Saru Kumari, “A Two-

Factor RSA-Based Robust Authentication System for

Multiserver Environments”, Security and Communication

Networks, 2017(1), 5989151, 2017.⏎

12.Oussama Mounnan, Abdelkrim EI Mouatasium, Otman

Manad, Tarik Hidar, Anas Abou EI Kalam, Noureddine

Idboufker, “Privacy-Aware and Authentication Based on

Blockchain with Fault Tolerance for IoT Enabled Fog

Computing”, In 2020 Fifth International Conference on

Fog and Mobile Edge Computing (FMEC), pp. 347–352.

IEEE, 2020.⏎

13.Shyamalendu Kandar, and Abhipsho Ghosh, “Smart Card

Based Remote User Authentication Scheme in Multi-

server Environment using Chebyshev Chaotic Map”,

Wireless Personal Communications, 133(4), 2657–2685,

2024, 10.1007/s11277-024-10895-w.⏎

14.Shuwan Sun, Weixin Bian, Dong Xie, Deqin Xu, and Yi

Huang, “Lightweight and Privacy-Preserving Multi-server

Authentication Scheme Based on PUF and Biometrics”,

Journal of Intelligent & Fuzzy Systems, 45(1), 911–928,

2023, 10.3233/JIFS-221354.⏎

15.Y. Liu, J. Zhang, and J. Zhan, “Privacy Protection for Fog

Computing and the Internet of Things Data Based on

Blockchain”, Cluster Computing, 2020.⏎

16.P.K. Sharma, and J.H. Park, “Blockchain-Based Secure

Mist Computing Network Architecture for Intelligent

Transportation Systems”, IEEE Transactions on Intelligent

Transportation Systems, 22(8), 5168–5177, 2020.⏎

17.S. Oyewobi, S. Misra, and C. Lal, “Mobility as a Service

(MaaS) Enabled Fog Computing: An Innovative Solution

for Smart City Infrastructure”, Journal of Ambient

Intelligence and Humanized Computing, 10(1), 1–17,

2019.⏎

18.T.A. Rahoof, and V.R. Deepthi, “HealthChain: A Secure

Scalable Health Care Data Management System Using

BC”, In Proceedings of International Conference on

Distributed Computing and Internet Technology, 2020, pp.

380–391.⏎

19.G. Li, M. Dong, L.T. Yang, K. Ota, J. Wu, and J. Li,

“Preserving Edge Knowledge Sharing among IoT Services:

A BC-Based Approach”, IEEE Transactions on Emerging

Topics in Computational Intelligence, 4(5), 653–665, Oct.

2020.⏎

20.P. Gope, and B. Sikdar, “Lightweight and Privacy-

Preserving Two-factor Authentication Scheme for IoT

http://dx.doi.org/10.1007/s11277-024-10895-w
http://dx.doi.org/10.3233/JIFS-221354

Devices”, IEEE Internet of Things Journal, 6(1), 580–589.,

2018.⏎

21.G. Srivastava, J. Crichigno, and S. Dhar, “A Light and

Secure Healthcare Blockchain for IoT Medical Devices”,

2019 IEEE Canadian conference of electrical and

computer engineering (CCECE) (pp. 1–5). IEEE., 2019.⏎

Chapter 5

Securing IoT System Using ML

Models

Arbaz Adib Dalwai, Shivani Jaswal, and Rohit Verma

DOI: 10.1201/9781003610168-5

5.1 Introduction

The Internet of Things (IoT) can be described as one of the revolutionary

technologies as it connects things, data and cloud to improve the operational

efficiency and integration. But this extended environment has brought about

severe weaknesses in IoT environments, exposing them to various types of

cyber threats. Out of these, distributed denial of service (DDoS) attacks are

rather unique because they flood the resources of the network, making the

services nonfunctional. Such threats not only affect the IoT-dependent

operations or progressive control but also undermine the Cloud platforms [1]

that facilitate such devices and operations. The common security solutions like

firewalls and intrusion detection systems (IDS) [2] have been working in

reducing many vulnerabilities. However, the growing advancement in attacks

also requires stronger and smarter security in the context of IoT. As traditional

pattern matching has its drawbacks in analysing and classifying frequently

changing attack scenarios in real time and within the context of the IoT

architecture’s limited bandwidth and computational capabilities, it is

necessary to switch to a better and far more resilient system to attacks. These

limitations motivated the necessity of building a hybrid system which would

combine the strengths of advanced machine learning [3] (ML) models with

techniques of systems like IDS and Security Information and Event

Management (SIEM) in order to improve the detection and differentiation of

DDoS [4] attacks in IoT networks. By integrating the rule-based and ML-based

methods into the cloud environment the system’s overall detection

capabilities can be increased into a large extent.

http://doi.org/10.1201/9781003610168-5

To encounter the challenges posed by the ever-evolving threats landscape

in a dynamic cloud environment, this research investigates the following

question:

How can a cloud-based real-time security monitoring system using SIEM,

IDS and machine learning models adaptively and effectively analyse and

classify DDoS attack on IoT devices?

The foremost objective of this research is to designing and implementing a

hybrid security solution that would integrate the rule-based detection with ML

models for enhancing the adaptability of the system in identifying the attack

patterns accurately and ultimately securing the IoT devices. The research will

then assess the system’s performance by testing it under simulations, which

will replicate the real-world environments to determine whether it is able to

detect and classify the threats in real time.

Figure 5.1 illustrates the integral components of the proposed system.

Figure 5.1 Cybersecurity threat detection layout.⏎

This research aims to contribute to the field of cybersecurity through

several key points, such as demonstrating a practical integration of SIEM, IDS

https://calibre-pdf-anchor.a/#a388

and ML models in order to create a hybrid detection framework which would

be capable of securing the IoT systems through attacks like DDoS in real time.

By providing visual alerts through Kibana dashboards, the research also offers

real-time insights, helping the analysts in better decision-making. Despite the

contributions, no research is without any limitation, including this. The

experimental setup relies on simulated attack traffic, which sometimes may

not capture the complexities of the attack fully and this arises the need for

future research in this area to test the framework in more complex settings.

This chapter is structured as follows: Section 5.2 presents the related work

detailing the analysis of existing researches in this area. The overview of the

methodology is presented in Section 5.3, containing the information on

research framework and experimental plan. Section 5.4 presents the design

specifications, while Section 5.5 deals with the implementation, focusing on

the technical aspects of the research. Evaluation consisting of the

experimental findings and discussion is presented in Section 5.6. Finally,

Section 5.7 concludes the chapter while proposing future enhancements.

5.2 Related Work

The world of cybersecurity has witnessed a lot of change in the past few

years, with the integration of advanced tools such as SIEM and IDS for real-

time threat detection [2,5,6]. Also, a lot of advancements have been made to

traditional cybersecurity practices, with the use of ML models into it. These

technologies play a vital role in the overall enhancements in the detection and

monitoring techniques of different attacks. The following subsections will

discuss about the literature review conducted for this research. Key search

areas included the integration of SIEM and IDS for real-time monitoring, IoT

systems and the attacks/security challenges associated with it, and

implementation of ML models for DDoS detections. This literature review

helped in forming the base foundation for the methodology and

implementation sections of this research.

5.2.1 SIEM, IDS and ML Models in Cybersecurity

The usage of SIEM and IDS solutions has been thoroughly investigated in

many of the recent researches defining the importance of these tools in the

field of cloud security. A research by Tuyishime et al. (2023) [7] has come up

with a SIEM-based approach for threat monitoring in cloud environments

through components such as virtual machines, load balancers, and web

application firewalls in order to have a central point for logging and analysis. It

specifically tries to highlight the importance of SIEM in generating automated

alerts to enhance the response times while also trying to evaluate the

frameworks’ scalability in handling large volumes of data. However, it mainly

focuses on the system architecture and operational efficacy, with very limited

work on identifying specific attack types. Granadillo, Zarzosa and Diaz (2021)

[8] further extend this understanding by providing a comprehensive analysis

of existing SIEM solutions, including their functionalities, benefits and

limitations. It mainly focuses on the necessity of integrating SIEM in modern

cybersecurity infrastructures while also pointing out the challenges the

solution has to offer. Likewise, the research by Lee et al. (2017) [9] extends

these ideas with a SIEM architecture especially designed for Security-as-a-

Service (SECaaS) in the cloud. This research describes the key factors which

include scalability, flexibility and multi-tenancy when adapting SIEM systems

to cloud native applications. This study however does not have an evaluation

setup to test the system in real-world scenarios.

In order to make further improvements in the SIEM technologies, Ayu et al.

(2024) [10] have presented the concept of integrating ML with SIEM to

improve the detection capabilities and thus showing the potential of ML

models in solving the gaps in traditional rule-based systems. Here the

researchers have implemented anomaly detection using the Random Forest

(RF) classifier on CSE-CID-IDS2018 dataset collected from an IDS which is pre-

processed using the principal component analysis. Despite its promising

results the study lacks on evaluating the model’s performance on real-time

data and only focuses on one particular dataset. Similarly, Saeed et al. (2022)

[3] present an ML-based IDS which is customised for usage in the cloud

environments through the incorporation of a number of algorithms, such as

Naive Bayes classifier, decision tree classifier, supporting classifier, logistic

regression and RF classifier, to analyse network traffic and detect anomalies.

The study stresses on how the implementation of ML techniques can lower

down the false positive and enhance the detection capabilities of an IDS in

cloud infrastructure. While Innab et al. (2024) [11] present different security

attacks in cloud environment while evaluating the different IDS types and

techniques that can tackle it, categorising the IDS into signature-based,

anomaly-based, hybrid-based and other approaches and analyses, their

effectiveness lies in handling and detecting the security events. Their research

states that signature-based attacks can effectively detect known threats but

fail in unknown threats, anomaly-based attacks are well known for detecting

unknown threats but have a greater false positive alert, while hybrid approach

balances the two and provides improved detection accuracy. While this

research was comprehensive, it lacked any practical implementation to

showcase the findings.

5.2.2 IoT Devices

In the study by Munshi et al. (2020) [12], the authors explain the growing

susceptibility of IoT devices to DDoS attacks and the seriousness of the

security risks arising from the expansion of IoT networks. The paper underlines

how integrating the IoT devices improves the usability and the functionality of

devices while these devices create new threats and risks addressed by

attackers. It highlights fundamental risks like poor or invalid methods of

identification and recognising device interaction protocols, which put IoT

devices in the same level of risk as other attached devices during DDoS

attacks. In turn, to address these threats, the authors suggest that security

should be built up and enhanced in the form of better authentication

mechanism, security protocols and network monitoring that can identify the

attack and neutralise it in real time. This work is of particular relevance to the

study of threats in IoT scenarios while emphasising the importance of dynamic

methods to address the risks of DDoS attacks. In turn, these findings match

the goals of this research and give a theoretical background for considering

DDoS threat vectors and designing corresponding detection approaches in IoT-

based systems.

5.2.3 DDoS Detection Mechanisms

Extensive researches conducted on DDoS detection have shown various

innovative approaches that use SIEM and ML techniques to address the

growing complexities of this attack. Çakmakçı et al. (2021) [13] propose a

framework for detecting various types of DDoS attacks through SIEM. It

encompasses an incident detection engine within the SIEM in order to identify

the attack patterns. It also has an inference engine which automatically

suggests the response and recovery steps after detection, thus reducing the

reaction time for ongoing attacks. Future research on this framework could

enhance the detection capabilities of the system when tested in diverse

network environments [13]. Complementing this, research by Dhahir (2024)

[14] introduces hybrid technique which combines the clustering-based local

outlier factor for feature engineering with extreme gradient boosting

(XGBoost) for the detection of DDoS attacks. This model was implemented and

tested on the CIC-IDS 2017 and CIC-IDS 2018, achieving an accuracy of

99.99% and a precision score of 100%. However, its effectiveness has not

been tested in dynamic settings. Similarly, Chen et al. (2018) [15] use the

XGBoost algorithm for detecting the DDoS attack in a software-defined

networking-based cloud environment. The proposed model had a high level of

performance in detecting normal and malicious traffic, hence proving the

effectiveness of using the XGBoost. It also depicted that XGBoost can

effectively handle large volumes of data in dynamic cloud environments.

However, exploring the impact of real-world noisy data with different traffic

and attack types would actually test the model’s performance which is lacking

in this study. Collectively these researches highlight the efficiency of SIEM and

advanced ML models, especially XGBoost, in improving the DDoS detections.

5.2.4 Summary

This section explores various existing researches conducted on SIEM, IDS, and

advanced ML techniques for detecting different attacks including DDoS in

various environments, especially cloud environments. Table 5.1 presents a

brief summary of other findings while proposing the solutions that this

research has to offer.

Table 5.1 Findings of Existing Techniques⏎

Aspects Findings Gaps Identified Research Contribution

SIEM and

IDS

SIEM is considered as

an essential

component for event

management while

IDS improves the

detection rate.

Insufficient

integration of ML

models with SIEM

and IDS to create

new hybrid

systems.

Combined the ML

models with SIEM and

IDS in order to enhance

the overall detection

rates.

DDoS

detection

Results obtained from

ML models (RF and

XGBoost) have a

higher accuracy in

identifying DDoS

attacks.

Models not

tested with real-

world dynamic

data, thus

questioning the

scalability.

Framework designed

for real-time

assessment of ML

models for DDoS

detection in a cloud

environment.

Recurring

gaps

Lack of real-time

experiments and

inadequate

combination of rule-

based prediction and

ML-based prediction

approaches.

Inadequate

evaluation of

results in hybrid

systems under

real-time

conditions.

Proposes a system that

integrates rule-based

and ML-based

predictions in a real-

time cloud setup

evaluating its

effectiveness and

scalability.

5.3 Research Methodology

This research is designed with an experimental and quantitative approach

methodology, wherein the controlled simulation of attack, its monitoring and

analysis using SIEM and IDS reflects the experimental aspect, while the

numerical nature of the collected logs and their analysis using ML models and

evaluation metrics resembles the quantitative side. The system designed uses

both rule-based and ML-based detection techniques in order to identify and

analyse DDoS attacks. The methodology can be structured and divided into

the following standard research categories.

5.3.1 Research Design

An experimental approach consisting of three main components – simulated

attack, monitoring network activity and detection mechanism – was designed

to answer the stated research question effectively.

The first component includes the simulation of attack that is DDoS. The

attack was launched through an attacking machine setup on the Amazon Web

Services (AWS) EC2 instance and the simulations was made sure to be

designed in a way that reflects a real-world threat scenario. The DDoS attack

was specifically targeted on the IoT server hosted on the EC2 instance using

the hping3 command from a docker service on the attacking machine which

generated high volumes of traffic. This was the same server which hosts the

IoT devices on the MQTT broker. The attack simulation steps were crafted and

implemented in order to generate and capture enormous network activity logs

on the IDS.

As mentioned previously, the second component was monitoring all the

activities in the cloud environment on a real-time basis. For this Suricata,

which is an open-source IDS, was deployed on the EC2 instance in the same

Virtual Private Cloud (VPC) as that of the IoT server and through traffic

mirroring on AWS it was made sure that the IDS is able to capture all the logs

depicting the network traffic in the design. The IDS was encompassed with all

the emerging threat rules which made sure that the IDS is up to date and

would identify different anomalous behaviour which is possibly associated with

the launched attacks. Moreover, importing the emerging threat rules also

made sure that the system also detects other attacks through a detailed

inspection of logs. Filebeat was also installed and configured in the same

instance as Suricata in order to send the logs to ELK (Elasticsearch, Logstash,

and Kibana) [16] stack. This made sure that the logs received by the SIEM are

transferred in real time without any data loss for further processing and

analysis.

The final and the most crucial component was detection mechanism. The

evaluation of the detection mechanisms can be summarised in two parts: rule-

based detections and ML-based detections. The rules were encompassed in

the Kibana to identify the specific patterns in the logs to identify DDoS

activities. Additionally, ML models (RF and XGBoost) were trained on the IDS

logs to classify the attacks. This dual approach in the detection mechanism

ensured a comprehensive evaluation of the logs in real time, making sure of a

secure network infrastructure deployed completely on the cloud. By combining

these components, the research design ensured a robust framework for

simulating, analysing and monitoring security threats in a cloud-based

environment. This design also made sure that the testing is adhered to

standard practices such as the National Institute of Standards and Technology

(NIST) guidelines by following a proper data collection and analysis from

relevant sources.

5.3.2 Data Collection

The simulated real-world attack generated datasets in the form of logs

(network traffic activity) which was the primary source for data collection in

the entire setup. The main objective here was to collect network activity logs

that would resemble the DDoS attack which would further be used for rule-

based and ML-based detections. To simulate the DDoS attack hping3

command was used from a docker container on the attacking machine hosted

on the EC2 instance. This command was targeted on the IoT server ensuring

that a high-volume traffic is logged on the same imitating a typical DDoS-like

scenario with traffic spikes and abnormal connection requests/attempts. The

hping3 command was specifically used due to its flexible approach in sending

network packets helping effective log generation.

All these testings were done in a controlled and isolated environment by

adhering to the standard ethical testing practices. All these logs were as

stated earlier captured on an open-source IDS- Suricata [17]. It was configured

in a way to detect all the network traffic in the infrastructure and record the

network metadata including the source and destination IPs, ports, protocols,

timestamps and other relevant information associated in a genuine network

traffic. These logs were structured and stored in the JSON format on the

Suricata, which made it convenient for further data processing by the

upcoming tools and technologies.

Specific Characteristics of the Logs:

The logs include critical metadata which is explained in Table 5.2.

Table 5.2 Metadata⏎

Fields Captured Reason

Source IP (src_ip) Origin of network traffic

Destination IP (dest_ip) Target system or service

Source Port (src_port) Port linked to the originating application

Destination Port (dest_port) Service which is being targeted such as

TCP/IP(port 1883) reserved for MQTT

Protocol The network protocol which is used (e.g., TCP

and UDP).

Timestamp Precise time of the recorded activity

Event Type (event_type) Classifies the nature of network activity

whether it is an alert, flow or normal

Fields Captured Reason

Bytes to Server

(bytes_toserver)

Total data volume sent to the target server

Packets to Server

(packets_toserver)

Number of packets sent to the target server

Characteristics:

High traffic volume spikes: Reflecting DDoS attack patterns.

Repeated connection attempts: Possible characteristic of SYN flood

attacks.

The logs had special features like high consistency as the Suricata uses ET

rulesets which make sure that the events are correctly tagged which is same

as realistic environment. Data quality was a key aspect to be taken care of

during the collection phase as the entire detection process was relying on the

data in IDS and hence filebeat was introduced so that it could transfer the

data ahead without dropping the essential metadata fields, ensuring seamless

log transmission.

5.3.3 Data Preprocessing

The data preprocessing step mainly focused on the preparation of the network

activity logs collected by the IDS for ML-based threat detection. The data

preparation involved cleaning and feature engineering from the raw JSON logs

stored in the Elasticsearch to make sure that the data on which the models are

to be trained is accurate. The process started with filtering of fields from the

raw JSON logs. Features including the protocol source IP, destination IP, source

port, destination port, bytes to server, bytes to client, packet to server and

packet to client were considered very essential in the detection of DDoS

attacks. These fields contain information such as source and destination of the

network traffic, amount of traffic and number of packets: all critical for

scanning for attack-bearing high-volume traffic. This data combined can be

used for an effective threat detection. This was then organised into a tabular

format by using pandas. Through this process it was made sure that the data

is suitable for training and further analysis. Furthermore, numerical encoding

was applied to convert the categorical features such as IP addresses into

numerical representations. This was done using a custom function which made

sure the data is consistent and compatible with the ML models. Features such

as src_port and dest_port were retained as it is due to its integer structure.

The missing values were addressed either by assigning them with default

values or excluding out the incomplete records. This was important as it made

sure that the dataset generated contained right data that would be consistent

and reliable for analysis.

The data was then labelled to its corresponding simulated attack scenario.

The data was mainly tagged into two categories: DDoS and benign. DDoS logs

were identified and labelled based on patterns such as high traffic volume

(e.g., bytes_toserver exceeding 29,000 and packets_toserver exceeding 650),

which is characteristic of SYN flood or other volumetric attack patterns, while

the remaining data was tagged as benign. Once the data was completely

ready for analysis, it was split into training and testing, ensuring there was no

imbalance. Standardisation was also done on the features in order to put the

data into correct format for enhancing the model’s performance. Thus, this

cleaned and pre-processed data was then used to train the RF and XGBoost

models ensuring effective evaluation. The cleaned and labelled dataset

formed the basis for accurate evaluation of the models in the context of DDoS

detection.

5.3.4 Experimental Setup

The setup was designed and executed completely on AWS, making sure that

the environment is completely controlled and isolated as it involved simulation

of attack, real-time log collection followed by its evaluation. The main

components of the setup are explained next.

IoT Server: The IoT server which is hosted on an EC2 instance has an

MQTT broker running, which is an important component for managing IoT

device communication. It is a broker providing lightweight, real-time

message exchange between IoT devices and their applications. The MQTT

broker was chosen because in IoT environments it’s a widely accepted IoT

device operation hub. The IoT devices were simulated to reflect real-life

experience, for instance, smart sensors and smart devices. Node-RED is a

widely used flow-based development tool for visual programming mainly

used for IoT applications. The simulation setup included virtual devices

which would replicate the functions of temperature sensors, humidity

sensors, and motion detectors. These devices are set up for continuously

sending data to the MQTT broker, creating an actual realistic IoT

ecosystem for experimentation purpose. Since the MQTT broker is the

heart of the IoT ecosystem, any disruption as a result of a DDoS attack

can cause the IoT devices to malfunction, which in turn may affect real-

time operations. For this reason, this broker is selected as the primary

candidate for DDoS simulations. Figure 5.2 presents the Node-RED design

which was set up on port 1880 of the IoT server, simulating the virtual IoT

devices.

Figure 5.2 Virtual IoT devices on Node-RED.⏎

Suricata IDS: It is deployed on a dedicated EC2 instance in order to

monitor the real-time traffic associated with the network. This not only

captures and analyses the malicious and normal traffic but also

generates the logs and stores them in JSON format for further processing.

Traffic Mirroring: While the IoT server and IDS instances were deployed

within the same VPC, additional configurations were required to set up a

clear connection between these in order to ensure that the IDS captures

the network traffic from these sources and thus traffic mirroring was

configured to establish and maintain this connection.

Log Pipeline: For a smooth and seamless transfer of data, filebeat was

deployed and configured on the Suricata instance. It is used to ship the

logs from IDS to Logstash instance directly in real time. The Logstash

then processes and structures the data before sending and storing it in

the Elasticsearch. This flow makes sure an efficient way to handle the

data transmission.

ELK stack SIEM: This is again deployed on a separate instance which is

responsible for functioning of Elasticsearch, Logstash and Kibana. The

main functionality of the SIEM here is to maintain the logs centrally which

are received from the IDS, visualising the alerts triggered through the

rule’s setup in the Kibana and display it on the dashboards. It not just

inputs the data from IDS but also from the ML model instance further

displaying its predictions.

Trained models (EC2 instance): A separate and dedicated instance was

deployed in order to store the trained models wherein it can fetch the

logs from Elasticsearch, classify them according to the trained models

and index the predictions back to the Elasticsearch.

Attacking Machine: While the above setup displays the detection

capabilities, this instance was deployed in order to generate the network

traffic through the simulation attacks. This is deployed on an isolated

instance wherein a docker container is installed and used to simulate the

DDoS attack using the hping3 command.

5.3.5 Detection Mechanism

The detection mechanism used in this research uses a dual strategy wherein

the detection relies on both rule-based detection using the SIEM capabilities

and on the predictions made through the ML models. This combined approach

complements each other and strongly puts together a robust framework for

identifying security threats in real time.

Rule-based Detection – The ELK stack SIEM has a vast dictionary of pre-

configured rules to detect a wide range of known threats and attacks. These

rules were then imported in our system from SIEM’s default library. This helped

in identifying the attack patterns such as high-volume traffic, unusual port

usage, suspicious HTTP requests, etc. In order to enhance the system’s

detection capabilities custom rule was also created in Kibana to identify and

flag the attack patterns observed in the logs through the simulated scenarios

focusing on DDoS wherein the rule [18] was customised to trigger the alerts

after identifying high traffic anomalies, such as SYN flood attack targeting the

IoT server. These rules helped in generating real-time alerts on Kibana which

was then helpful in visualising the dashboards that enable efficient real-time

monitoring of network activities.

ML-based Detection – The ML-models RF and XGBoost were deployed and

trained based on the preprocessing steps mentioned in the earlier section.

They were integrated in order to adapt the threat detection by analysing the

network traffic logs and classifying the events as DDoS and benign. Here a

python-based pipeline was designed and structured in way that it fetches the

logs from Elasticsearch and passes them to the model for classification, and

these predictions made by the models were then indexed back to

Elasticsearch, ensuring an absolute integration with the SIEM system. This

integration of ML-based detection thus strengthened the system’s detection

capabilities as it detects the attack patterns which get evaded from the static

rules enhancing the overall detection capabilities.

This combined approach can be viewed together at the same time on

Kibana dashboard, making it effective to address the challenges posed by the

attackers through attacks such as DDoS in real time.

5.4 Design Specification

5.4.1 Introduction to System Design

The main objective of this research was to structure a robust IoT design

framed in a cloud-based environment having several virtual IoT devices which

could be possibly targeted and thus create a real-time monitoring structure

which would be able to capture, detect and classify these attacks. The

architecture of the entire setup was precisely crafted to imitate a realistic IoT

environment including multiple components that would seamlessly interact

with each other in order to monitor and analyse the network traffic. The

primary components integrated here are the IoT server which hosts the IoT

devices using technologies such as Node-RED and MQTT broker, an IDS which

would monitor the network traffic, a SIEM system which would centrally log

and visualise the traffic and, finally, the ML models which would enhance the

threat detection capabilities of the system through its adaptiveness.

The design was built by prioritising the scalability and adaptability of the

solution, which would allow the system to handle real-time traffic flows and

support multiple detection strategy. The setup was implemented completely

on AWS due to its enhanced flexibility and great computational power

resources which was necessary for simulating the real-world attack scenarios

and analysing the network traffic activity in real time without any delays.

5.4.2 Architectural Overview

Figure 5.3 shows the architecture of the designed system consisting mainly of

five AWS EC2 instances which are responsible for handling the function of IoT

server, Suricata IDS, ELK stack SIEM, trained ML models (RF and XGBoost) and

the attacking machine. All these instances had to be interconnected for a

seamless interaction between them, which would enable real-time threat

detection. Executing the solution on cloud also enabled the system to be

completely isolated and controlled for the experimental purpose. The IoT

server which hosts the virtual IoT devices designed on Node-RED and

communicating with MQTT broker acts as the primary target for the DDoS

attack, as it represents to be an integral part of any IoT setup. The attacking

machine instance was used to simulate the DDoS attack via a docker

container which would generate the SYN flood and UDP flood attack using the

hping3 command. Traffic mirroring was done on AWS by setting up mirror

session mainly between the IoT server and IDS. This approach ensured that all

the network traffic would be routed towards the IDS, enabling complete

monitoring of the resource. The Suricata IDS was then responsible for

analysing this captured traffic and generating detailed logs for all the network

activity. These logs were then passed to the SIEM server with the help of

https://calibre-pdf-anchor.a/#a435

filebeat (a lightweight log shipper), where the logs were analysed, indexed and

presented in real-time dashboards. The ML models were deployed and run on

an EC2 instance which would link them to the SIEM instance for detection. This

connection helped in SIEM sending the logs to the instance where the models

could classify the events as DDoS and benign and send the predictions back to

the SIEM for its visual representation along with the rule-based detections.

Within Elasticsearch, two distinct indexes are maintained: one for rule-based

detections generated by Suricata and another for logs that are analysed by ML

models. These indexes help in splitting the results from both the sources,

ensuring a comprehensive analysis. Lastly, Kibana is used as the visualisation

layer to provide more engaging dashboards for the outcome of rule-based and

ML-based detections. Being the central component for generating system

alerts, the dashboards grant administrators visibility into system activity and

expose possible attacks, their trends, and categorisation, which is useful for

managing network activity.

Figure 5.3 System architecture.⏎

5.4.3 Justification for Selected Tools and Technologies

All the tools and technologies selected were chosen to align with the current

needs of the cybersecurity world, ensuring that the research’s setup would

imitate the practical use cases while maintaining the academic relevance as

well.

Suricata (IDS): This IDS being an open-source and highly customizable

system emerges to have prominent ability to perform a real-time network

traffic analysis. It generates detailed logs of the captured network activity

which is a primary need of the research. It also supports emerging threat

rule sets allowing real-time detection of not only DDoS and attack

patterns but also hundreds of other attacks. Due to all these benefits,

especially its ability to handle the high-volume traffic efficiently, its native

multi-threading techniques made it a better choice than any other open-

source IDS (viz. Snort IDS) [17] (Waleed, Jamali and Masood, 2022).

ELK [19] stack SIEM: This again is an open-source tool with Elasticsearch

which can efficiently store and index large volumes of data/logs for real-

time analysis, Logstash which can process and structure the logs

ensuring that the data is suitable for advanced querying in the

Elasticsearch and, lastly, Kibana which provides a user-friendly graphical

user interface for interpreting what is actually going on in the SIEM by

visually representing data via dashboards. Due to all the necessary

requirements being fulfilled by using stack and given its popularity in real

world wherein it is used by multinational giants, this tool was highly

relevant for the overall system.

ML models (RF and XGBoost): Both being ensemble learning models have

improved classification rate and can reduce overfitting issues notably.

While RF is a robust ML model usually used to handle large datasets,

XGBoost provides optimum performance with imbalanced datasets,

making both an ideal selection for adaptive detection in real-time

environment considering their speed and effectiveness.

Node-RED: Being user-friendly with flow-based interface, Node-RED was

chosen to simulate the IoT devices because it aids in quick prototyping

and visualising the IoT data flows. It gives a simple platform to create

various IoT devices which can replicate the functions of real devices such

as temperature sensors, motion detectors and humidity monitors and

also save them to the MQTT broker easily.

MQTT Broker: The primary advantage of MQTT broker is its lightweight

protocol that is specifically designed for artificial devices and low-

bandwidth high-latency environment; therefore, it was chosen as a

central hub for communication of IoT. Unlike HTTP-based communication,

MQTT offers a better messaging with a lower overhead that makes it

suitable for IoT use cases where devices are flooded with real-time data.

In addition, its publish-subscribe model makes it possible to flow the

communication open among various IoT devices and the server,

improving the scalability and reliability. The usage of MQTT broker helped

the simulated system closely align with the realistic IoT environment.

AWS EC2 instances: As the above-mentioned tools and technologies

require heavy computational power and storage to process and function

to the best of their requirements, it was very important to provide them

the base they need for the setup. This was offered by EC2 instances with

its immense scalability and flexibility for deploying multiple components

in one go. It also helped in assigning the elastic IPs to our systems.

hping3: This is a highly flexible command line tool which can generate

custom packets with varying attack intensities to simulate flood attacks

(Ariffin et al., 2021) [18].

5.4.4 Design Considerations and Constraints

The balance between realism, scalability and adaptability was the core while

designing the entire system. Scalability was highly prioritised as the system

had to deal with large volume of traffic which would be generated during the

simulated DDoS attack; this traffic was also to be processed for giving the

results in real time. Thus, the use of AWS EC2 instances became crucial as it

provided the flexibility to deploy components with different computational

needs, such as lightweight instances for attacking server and other machines

and high-performance and high-storage instances for IDS and SIEM. As this

setup was entirely run in an AWS environment, it ensured that the simulated

attacks are not creating any issues for the external system. Docker container

was deployed on the attacking machine to set apart the traffic sources of two

distinguished attacks. This enabled control over traffic generation without any

issues, such as cross-contamination of logs. The next big thing to be

constituted was realism as the entire setup had to be replicated as a real-

world attack scenario. The usage of MQTT broker resembles like an actual

communication happening between the IoT devices with its central hub. Also,

as the system encompasses the rule sets from emerging threat point on

Suricata, the detection capabilities of the system in terming the DDoS attacks

were enhanced and well equipped with industry standards.

While all this was to be done, several challenges arose during the

implementation, which were to be addressed and overcome for making a

resilient system. Initially, AWS lambda and AWS Sagemaker were implemented

for the deployment of ML models. But due to configuration and connectivity

issues and also because of problems raised by IAM constraints, this approach

was not feasible and thus was replaced by the adoption of EC2 instances

wherein these models are deployed. Moreover, with ML models another big

issue faced in the early stage was that the models were trained on sample

datasets initially but the raw logs which were generated from the IDS were

nothing similar to the sample datasets available in various resources, and this

created a massive feature mismatch causing the retraining of models from the

datasets acquired from actual raw JSON logs from the experimental setup.

Through this alignment between the dataset and real-time predictions, the

results received were unparalleled. Connectivity issues between filebeat,

Logstash and Elasticsearch were addressed through repeated trial and testing

to ensure that the log transmission pipeline functions accurately. The resource

limitations of EC2 instances in handling the heavy tools with huge volume of

data were sorted out by promoting/upgrading the instance types and finding

the accurate one which could balance the load for the system. These

considerations and constraints overall framed the architecture of the entire

system, resulting in a robust and reliable design.

5.5 Implementation

5.5.1 Infrastructure Setup

Table 5.3 shows the EC2 instances with their configured roles and resource

allocations.

Table 5.3 EC2 Instances⏎

Component

Instance

Name Elastic IP

Instance

Type Role

Configuration

Details

IoT server IoT

devices

54.81.38.135 t3.micro Hosting the

IoT devices

Node-RED

and MQTT

broker were

used to

simulate IoT

devices.

IDS server IDS

server

34.192.113.33 t2.micro Monitoring

the network

traffic

Configured

Suricata with

the emerging

threat point

rules.

Deployed

filebeat and

connected

with SIEM.

SIEM

server

SIEM

server

35.172.58.170 t3a.large Hosting

Elasticsearch,

Logstash and

Kibana

Logstash

receiving

data.

Elasticsearch

Component

Instance

Name Elastic IP

Instance

Type Role

Configuration

Details

(port:9200),

Kibana

(port:5601).

Trained

models

server

ML

models

52.3.50.159 t3.micro Running

trained

models

Connected

with SIEM

instance to

fetch logs

and push

predictions.

Attacking

machine

Attacking

machine

3.226.63.94 t2.micro Simulating

the DDoS

attack

DDoS via

hping3

through

docker.

5.5.2 Detailed Configurations

Suricata Configuration: Suricata as an IDS was deployed on a dedicated

t2.micro instance running on Ubuntu with a storage space of 17 GB. All

the primary configuration was modified in the customizable suricata.yml

file. This instance was also set as the mirror target to have a clear mirror

session from the IoT server hosting the IoT devices. The IPs of these

servers were also added in the Home Net [20] section of Suricata

configuration file so that it is able to capture the network traffic smoothly.

The rule sets were then imported from Emerging Threat point in the IDS

through suricata-update command to ensure that the detection

capabilities of the IDS are well in place. This included critical rules

covering several attack patterns, especially the one identifying DDoS

attacks in case of SYN flood and UDP flood scenarios [21]. All these rules

were imported and activated on the system.

Filebeat configuration and integration: Filebeat was deployed and

configured on the IDS [22] server due to its lightweight approach wherein

it forwards the eve.json logs to the Logstash in the SIEM [19] server. This

was done primarily by enabling the Suricata module on filebeat through

(sudo filebeat modules enable Suricata). Through this module the

Suricata logs were automatically parsed and structured, eliminating any

need for custom input configurations in the filebeat.yml file. However, the

output configuration had to be set in the filebeat.yml wherein it can

target the Logstash server on its IP 35.172.58.170 which listens the data

on port 5044. This allowed the filebeat to forward the structured logs.

Logstash Configuration and Integration: Logstash plays an important role

in the entire SIEM server as it listens to the raw logs sent from the

filebeat and transmits it to the Elasticsearch. All this communication is

defined in the filebeat-suricata.conf file located in Logstash. The

configuration is mainly divided in three parts input, filter and output for

handling the Suricata logs effectively. The input section depicts the

listening of Json logs on port 5044, aligning with the output section in

filebeat conf. Next, in the filter section, it identifies and processes the

events of alert type. The output section of the file is defined to send the

logs to Elasticsearch which is hosted on the same SIEM server on port

9200. These logs are indexed in a separate index pattern naming,

suricata-logs-*. By specifying the formatting as index => “suricata-logs-

%{+YYYY.MM.dd} the file also ensures that a separate index file is

created on each day with different logs. This configuration is validated

through immense testing of pipeline using testing commands and

thorough inspection of whether the real-time logs are indexed in

Elasticsearch.

Elasticsearch and Kibana configuration: Elasticsearch is deployed as a

single–node -cluster. It is configured to listen all the network interfaces

(0.0.0.0) on port 9200 so that the connections beyond the localhost can

also be accepted. This was mainly essential for forming a seamless

connection with other SIEM components, that is, Logstash and Kibana.

The xpack.security module was added to support the authentication and

secure access through API keys. On the other hand, Kibana has also been

configured to bind all the network interfaces as the server.host is set to

0.0.0.0 on port 5601. This was done for accessibility from any system,

within the network and interaction with Elasticsearch. Although

Elasticsearch and Kibana are configured to an initial localhost for

development usage, these parameters were changed to fit the

distributed cloud structure. Kibana accesses the Elasticsearch through its

own credentials which are set in its conf file (kibana_system user and its

passwords). Among all the default elastic rules, a total of 686 are

updated in the Kibana along with the custom rules. Rule for detecting

DDoS was defined in Kibana, which uses suricata-logs-* index and fields

such as event_type, alert_signature and hostname. The DDoS detections

are relying on SYN flood signatures tagged as Attempted Denial of

Service attack patterns. A specific connector was put in place for the

integration of this rule which made sure the alerts generated are stored

in a particular index.

ML integration:- Here the two .pkl files for the selected ensemble learning

models which are pre-processed as per the instructions stated in Section

5.4 are hosted in a t3.micro server. These models are deployed to

analyse the logs in real time from suricata-logs-* index located at

Elasticsearch. A connection to Elasticsearch is established here using the

Representational State Transfer (REST) Application Programming

Interface (API), using the SIEM server IP which is 35.172.58.170. Also it

has been given the authentication credentials for a secure data

connection. As the system is designed to work continuously with real-

time data, the @timestamp field is used to fetch only the logs that are

new or updated since the last processed batch. This dynamic strategy

helped the models to deal with fresh data every time. The next step is

the preprocessing pipeline which is applied to extract the relevant

features from the fetched logs to match the feature requirements of the

model for effective classification. Logs with missing values are filtered out

during this stage to ensure that the model works on complete data. Both

these models generate probability scores for each log entry for marking

the classification of attacks. These scores are then averaged so that the

strengths of these models are combined and a classification threshold is

put in place, marking the entries with their respective scores. Logs with a

score below 0.3 were tagged as DDoS, while those above this score are

tagged as benign activities. These thresholds were chosen due to the

nature of attack. As in the DDoS attack, it heavily relies on huge volume

of traffic with repetitive patterns, such as SYN flood attempt, resulting in

a generally lower score from the model. Thus, logs with a score less than

0.3 are tagged as DDoS. To minimise false positive rates, the logs which

lack the distinguished patterns for the attacks are classified as benign.

The processed logs which now contain the prediction classifications are

indexed back to Elasticsearch in a new index pattern as ml-predictions-

YYYY.MM.DD* using bulk API operations. The date-based naming system

was introduced for a better organisation of logs and predictions. The

system continuously processes the available logs in a continuous loop

every 5 seconds, and if the system encounters any connectivity issues, it

gracefully handles it through retry mechanism. Thus, this approach offers

optimised data ingestion and scalability without affecting real-time

prediction efficiency.

Attack simulation setup: The attacking machine setup was implemented

on an AWS EC2 instance (t3.micro) with a Docker container running the

hping3 tool. This tool was used in targeting the IoT server’s port 1883

using the hping3 -S -p 1883 –flood 54.81.38.135 command. This

command is executed from the docker container 4e1aabe808e3 to isolate

the attack traffic. This command generates a huge number of SYN

packets at a very high rate. The attack was directed at the MQTT broker

located on the IoT server by attacking the port assigned to it, and using

SYN flood to send as many TCP SYN packets as possible to the target.

This approach makes the simulation look like a practical scenario where

IoT communication protocols could be exploited. Thus, Suricata receives

all these logs as the traffic is mirrored from the employee machine and

the whole detection process is initiated.

5.6 Evaluation

This section would evaluate the performance and functionality of the

implemented IoT real-time security system through mainly two aspects:

system performance (depicting the efficiency and stability of the detection

mechanism) and detection accuracy (showing the effectiveness of the rule-

based and ML-based approaches in identifying the DDoS attack). The results

are mainly analysed against metrics such as detection times, system

reliability, and classification performance aligning with the objectives of the

research question.

5.6.1 System Performance

Figure 5.4 illustrates the detection times for individual events, showing

fluctuations in detection time mostly between 0.2 and 1.0 ms. The detection

mechanism remains consistent throughout the events without major spikes

and delays. The overall detection time remains within a suitable sub-

millisecond range, which depicts that the system is able to rapidly process the

events. Also, even after the variability in detection times the upper limit of a

maximum 1.0 ms reflects the real-time responsiveness. The system’s ability to

handle large volume of data consistently maintaining minimal detection

timeline aligns well with the research’s goal of real-time monitoring. This

consistent performance depicted in the result increases the reliability of the

system.

https://calibre-pdf-anchor.a/#a458

Figure 5.4 Detection time across events.⏎

Figure 5.5 illustrates the frequency distribution of detection times, which

ranges between a minimum time of 0.0 ms and a maximum time of 0.999 ms,

with the average detection time being 0.514 ms. The significant finding from

this is that the efficiency of the monitoring system with an average detection

time of 0.514 ms highlights the system’s ability to detect events instantly. The

low detection scores for a dataset of 10,000 events also depict the scalability

of the system, reflecting that it can handle larger workloads efficiently. This

evaluation depicts the robustness of the system’s detection mechanism. Even

when the events also contain high-density traffic flows such as during the

DDoS simulation, the system can still handle this traffic without any

performance degradation.

https://calibre-pdf-anchor.a/#a461

Figure 5.5 Distribution of detection times.⏎

5.6.2 Classification Reports for the ML Models

RF – The classification report for RF is presented in Table 5.4.

Table 5.4 RF Classification Report⏎

Metric Precision Recall F1-Score Support

Benign (0) 0.97 0.99 0.98 3760

Attack (1) 0.96 0.94 0.95 6240

Accuracy 0.96 10000

Macro Avg 0.97 0.97 0.97 10000

Weighted Avg 0.97 0.96 0.96 10000

Precision: The Random Forest model has high precision, especially for benign (0), meaning it rarely

predicts benign when it is actually an attack.

Recall: It captures Benign (0) well (99%) but slightly misses some attacks (94% recall for Attack (1)). This

model is sensitive to benign cases, ensuring that normal traffic is rarely flagged as an attack.

XGBoost – The classification report for XGBoost is presented in Table 5.5.

Table 5.5 XGBoost Classification Report⏎

Metric Precision Recall F1-Score Support

Benign (0) 0.98 0.98 0.98 3760

Attack (1) 0.95 0.96 0.95 6240

Metric Precision Recall F1-Score Support

Accuracy 0.97 10000

Macro Avg 0.96 0.97 0.96 10000

Weighted Avg 0.97 0.97 0.97 10000

Precision: XGBoost prioritises precision for both Benign (0) and Attack (1). It’s slightly better at

identifying true attacks with minimal false positives.

Recall: It maintains balanced recall for both classes, ensuring both attacks and benign traffic are

accurately flagged.

Key differences between the models are shown in Table 5.6.

Table 5.6 Key Differences between Models⏎

Feature Random Forest XGBoost

Strengths

Sensitive to benign scenarios

(low false positives for normal

traffic).

Good balance between the

attack and benign

detections.

Overall

accuracy

96% 97%

5.6.3 Distribution of Detected Events (ML Predictions)

The pie chart in Figure 5.6 describes the distribution of detected events on the

basis of ML-based predictions. These predictions are derived from separate

datasets from a different timeline, making sure the accuracy is maintained

even with dynamic input data reflecting real-time log analysis, which differs

from the static dataset used for training the models. The graph shows the

accurate findings of the ML models wherein the DDoS accounts for 37.5% of

the total logs analysed, given the huge traffic DDoS attacks create, while

62.5% is classified as benign. This visual presentation shows the ability of the

ML model by demonstrating how it can differentiate between the malicious

traffic and normal traffic in the simulated IoT network. The use of both benign

and attack traffic makes the dataset more balanced, thus preventing over-

optimistic results. This balance validates the robustness of the model,

confirming its capability to accurately detect DDoS attacks while handling a

considerable proportion of benign traffic. The graph also highlights the

adaptable capabilities of the models across different datasets (real-time logs),

which was the core fundamental of the research question. The integration of

ML-based predictions with SIEM demonstrates real-world application of the

selected models, hence proving the research objective of creating a real-world

solution for security monitoring.

https://calibre-pdf-anchor.a/#a473

Figure 5.6 Tag distribution: DDoS and benign.⏎

5.6.4 Detection over Time (Rule-Based Kibana Visualisation)

The graph in Figure 5.7 displays the identification of DDoS attacks by time in

rule-based mechanisms of Kibana. The grey line is drawn for alerts that have

been classified as “Potential DDoS Attack – SYN Flood on MQTT Port 1883.”

This graph represents the identification of some particular time intervals which

are associated with the DDoS attacks simulated. The lack of regular activity

https://calibre-pdf-anchor.a/#a476

between these spikes confirms that at times there is no malicious traffic at all,

highlighting the strength of the rule-based system in identifying the

occurrence of attack-specific events.

Figure 5.7 Rule-based detection.⏎

The graph in Figure 5.8 categorises network traffic into two main types:

“flow” (grey) and “other” (black). The flow comprises the legitimate or non-

attack traffic captured in the simulation, while “other” refers to other activities

that are not triggered through an alert. This visualisation gives a general

picture of the network activity, regular and abnormal traffic. The presence of

“flow” traffic between peaks of “other” guarantees a more elaborate

assessment of the system’s performance in detecting and tracking events of

any kind except malicious ones.

https://calibre-pdf-anchor.a/#a479

Figure 5.8 General traffic.⏎

5.6.5 Discussion

The above findings are critical in understanding the valuable insights which

the hybrid detection system has to offer with the integration of SIEM, IDS and

ML models in identifying the DDoS attack. This discussion will critically

evaluate these results, highlighting the system’s strengths and weaknesses in

comparison with existing research and providing suggestions for future

growth.

The system’s performance, which is measured through detection time

analysis, has an average detection time of 0.514 ms and a maximum of 0.999

ms, indicating its suitability in real-world applications. This shows the

efficiency of the system in handling and processing the events as swiftly as

required in a dynamic environment. However, there are certain spikes in the

detection time across some events, which possibly indicate occasional

computational delays that might be caused due to resource contention or

overheads in data preprocessing. For maintaining consistent real-time

performance there is a space for further optimisation in terms of resource

allocation and multi-threading capabilities. Both the classification reports for

the ensemble learning models demonstrate high accuracy in terms of

detection, with nearly perfect detection classification for the DDoS category.

But it has been noticed that XGBoost slightly outperforms RF in terms of recall

and precision as XGBoost is known to work well with imbalanced datasets. The

support values in the classification report reveal the number of samples in

each category – benign and attack – highlighting the effectiveness of the

system during high traffic during DDoS simulations. Moreover, the rule-based

system effectively identifies the spikes in activities showcasing the system’s

real-time ability in capturing the flooding of SYN events, validating the

system’s robustness in dealing with high volumetric attacks. The high

percentage of attack traffic proves the ability of the models and the system to

detect and classify the volumetric DDoS attacks successfully.

With the context of prior research conducted in this field, this research

demonstrates a practical implementation of a hybrid detection mechanism in

a cloud environment. Unlike prior studies which mostly rely on conceptual

frameworks, this research works under real-time conditions, showcasing the

use of XGBoost and RF effectively in security applications such as SIEM and

IDS and thus providing hands-on evidence of the system’s applicability in

addressing the gaps like scalability, adaptability and real-time performance.

5.7 Conclusion and Future Work

This research initially addressed critical challenges of developing a real-time

hybrid security solution designed in cloud-based environment focusing

primarily on DDoS attack. The research question was stated to discover how

the SIEM, IDS and ML models can be integrated effectively to achieve a

scalable and adaptive threat detection system for securing the IoT systems.

The objective of the research was to design and evaluate a framework under

simulated attacks replicating the real-world scenarios. Through the

developments done in this research the implemented framework has

successfully demonstrated its ability in detecting threats in real time by

combining the strengths of rule-based and data-driven (ML-models)

approaches. Key matrix in the evaluation section including detection time and

classification accuracies validates the system’s efficiency in addressing real-

time threats.

This research work proves that the integration of SIEM, IDS and ML model

technologies can be vital in developing a stronger and enhanced framework in

order to combat the current threats posed in a dynamic IoT environment. The

hybrid detection system scored an average detection time of 0.514 ms,

depicting the robust real-time detection abilities. The system also underlines

the potential strengths of combining rule-based and ML-based detections

rather than being used as isolated solutions in a security architecture by

visualising the detections made by both rules and ML predictions on Kibana.

The system’s real-time detection ability highlights its applicability in real-world

environments. Through this the system has achieved its objectives of

designing, implementing and evaluating a scalable hybrid detection system.

The findings of this research are important to both academic researchers and

real-world practitioners as they provide a link between theoretical and

practical applications. Academically, it provides substantial evidence in

integrating ML techniques with SIEM and IDS focusing on the practical

approach, and for industries, the framework puts forward a robust system by

enhancing real-time monitoring in cloud-based environment by an adaptive

approach for threat detection. While the research exhibits the potential of the

hybrid system, it also displays several limitations associated with the

research. Attack scenarios were performed in a controlled environment which

at times fails to capture all the possible variations of an attack that can occur

in the actual environment.

5.7.1 Future Works

Real-World Integration: Although our system is designed to work under

real-world conditions, it is only made possible through simulations and

thus it is critical in validating the system with real-world network traffic

logs to capture the unpredictability and diversity in the data. This can be

possible through partnering with organisations so that the system could

get high volume of real-world logs.

Adaptive Learning Models: Future developments of the system can be

achieved by integrating self-adaptive models which will dynamically

update based on different network activities or attack patterns. This will

make the system to be more reliable in identifying the zero-day attacks.

Commercialisation Potential: The proposed framework is robust enough

to be deployed in a small and medium-sized enterprise by working on

user-friendly interface and packaging the system for commercial use as it

can turn out to be a reliable, scalable as well as cost-effective detection

strategy for them.

References

1.Morkos, R. (2023) Powering the Growth of Cloud Computing: Infrastructure

Challenges and Solutions. Available at:

www.forbes.com/councils/forbestechcouncil/2023/07/24/powering-the-

growth-of-cloud-computing-infrastructure-challenges-and-solutions/

[Accessed 25 November 2024].⏎

2.Ahmadi, S. (2024) ‘Network Intrusion Detection in Cloud Environments: A

Comparative Analysis of Approaches’, International Journal of Advanced

Computer Science and Applications (IJACSA), 15(3), 2024.

http://dx.doi.org/10.14569/IJACSA.2024.0150301⏎

3.Saeed, M. S., Saurabh, R., Bhasme, S. R. and Nazarov, A. N. (2022) ‘Machine

Learning Based Intrusion Detection System in Cloud Environment’, in 2022

VIII International Conference on Information Technology and

Nanotechnology (ITNT). Samara, Russian Federation, 23–27 May 2022, pp.

1–6. https://doi.org/10.1109/ITNT55410.2022.9848611⏎

http://www.forbes.com/councils/forbestechcouncil/2023/07/24/powering-the-growth-of-cloud-computing-infrastructure-challenges-and-solutions/
http://dx.doi.org/10.14569/IJACSA.2024.0150301
https://doi.org/10.1109/ITNT55410.2022.9848611

4.NCCS (2024) Traffic Generator/DDoS Tool. Available at:

https://nccs.gov.in/public/events/DDoS%20Presentation%2017092024.pdf

[Accessed 15 October 2024].⏎

5.Oracle (2023) Design Guidance for SIEM Integration. Available at:

https://docs.oracle.com/en-us/iaas/Content/cloud-adoption-framework/siem-

integration.htm?u [Accessed 27 November 2024].⏎

6.Proofpoint (2024) Community Alert: Ongoing Malicious Campaign Impacting

Microsoft Azure Cloud Environments. Available at:

www.proofpoint.com/us/blog/cloud-security/community-alert-ongoing-

malicious-campaign-impacting-azure-cloud-environments [Accessed 25

November 2024].⏎

7.Tuyishime, E., Balan, T. C., Cotfas, P. A., Cotfas, D. T., and Rekeraho, A.

(2023) ‘Enhancing Cloud Security—Proactive Threat Monitoring and

Detection Using a SIEM-Based Approach’, Applied Sciences, 13(22), 12359.

https://doi.org/10.3390/app132212359⏎

8.González-Granadillo, G., González-Zarzosa, S. and Diaz, R. (2021) ‘Security

Information and Event Management (SIEM): Analysis, Trends, and Usage in

Critical Infrastructures’, Sensors, 21(14), 4759.

https://doi.org/10.3390/s21144759⏎

9.Lee, J-H., Kim, Y. S., Kim, J. H. and Kim, I. K. (2017) ‘Toward the SIEM

architecture for cloud-based security services’, in 2017 IEEE Conference on

Communications and Network Security (CNS). Las Vegas, NV, USA, 09–11

October 2017, pp. 398–399. https://doi.org/10.1109/CNS.2017.8228696⏎

10.Ayu, M. A., Erlangga, D., Mantoro, T. and Handayani, D. (2024) ‘Enhancing

Security Information and Event Management (SIEM) by Incorporating

Machine Learning for Cyber Attack Detection’, in 2023 IEEE 9th International

Conference on Computing, Engineering and Design (ICCED). Kuala Lumpur,

Malaysia, 07–08 November 2023, IEEE Xplore.

https://doi.org/10.1109/ICCED60214.2023.10425288⏎

11.Innab, N., Atoum, I., Alghayadh, F., Abu-Zanona, M., Alrubayyi, N. and

Basudan, F. (2024) ‘Intrusion Detection System Mechanisms in Cloud

Computing: Techniques and Opportunities, in 2024 2nd International

Conference on Cyber Resilience (ICCR). Dubai, United Arab Emirates, 26–28

February 2024, pp. 1–5.

https://doi.org/10.1109/ICCR61006.2024.10532903⏎

12.Munshi, A., Alqarni, N. A. and Abdullah Almalki, N. (2020) ‘DDOS Attack on

IOT Devices’, in 2020 3rd International Conference on Computer

Applications & Information Security (ICCAIS). Riyadh, Saudi Arabia, 19–21

March 2020, pp. 1–5. https://doi.org/10.1109/ICCAIS48893.2020.9096818⏎

13.Çakmakçı, S. D., Hutschenreuter, H., Maeder, C. and Kemmerich, T. (2021)

‘A Framework for Intelligent DDoS Attack Detection and Response using

SIEM and Ontology’, in 2021 IEEE International Conference on

https://nccs.gov.in/public/events/DDoS%20Presentation%2017092024.pdf
https://docs.oracle.com/en-us/iaas/Content/cloud-adoption-framework/siem-integration.htm?u
http://www.proofpoint.com/us/blog/cloud-security/community-alert-ongoing-malicious-campaign-impacting-azure-cloud-environments
https://doi.org/10.3390/app132212359
https://doi.org/10.3390/s21144759
https://doi.org/10.1109/CNS.2017.8228696
https://doi.org/10.1109/ICCED60214.2023.10425288
https://doi.org/10.1109/ICCR61006.2024.10532903
https://doi.org/10.1109/ICCAIS48893.2020.9096818

Communications Workshops (ICC Workshops). Montreal, QC, Canada, 14–23

June 2021, pp. 1–6.

https://doi.org/10.1109/ICCWorkshops50388.2021.9473869⏎

14.Dhahir, Z. S. (2024) “A Hybrid Approach for Efficient DDoS Detection in

Network Traffic Using CBLOF-Based Feature Engineering and XGBoost”,

Journal of Future Artificial Intelligence and Technologies, 1(2), pp. 174–190.

https://doi.org/10.62411/faith.2024-33⏎

15.Chen, Z., Jiang, F., Cheng, Y., Gu, X., Liu, W. and Peng, J. (2018) ‘XGBoost

Classifier for DDoS Attack Detection and Analysis in SDN-Based Cloud’, in

2018 IEEE International Conference on Big Data and Smart Computing

(BigComp). Shanghai, China, 15–17 January 2018, pp. 251–256.

https://doi.org/10.1109/BigComp.2018.00044⏎

16.Rochim, A. F., Aziz, M. A. and Fauzi, A. (2020) ‘Design Log Management

System of Computer Network Devices Infrastructures Based on ELK Stack’,

in 2019 International Conference on Electrical Engineering and Computer

Science (ICECOS). Batam, Indonesia, 02–03 October 2019, pp. 338–342.

https://doi.org/10.1109/ICECOS47637.2019.8984494⏎

17.STAMVS Networks (2024) Suricata vs Snort. Available at: www.stamus-

networks.com/suricata-vs-

snort#:~:text=Suricata’s%20ability%20to%20handle%20high,networks%20

with%20heavy%20traffic%20loads [Accessed 10 October 2024].⏎

18.Ariffin, S. H. S., Chong, J. L. and Wahab, N. H. A. (2021) ‘Configuring Local

Rule of Intrusion Detection System in Software Defined IoT Testbed’, in 2021

26th IEEE Asia-Pacific Conference on Communications (APCC). Kuala

Lumpur, Malaysia, 1–13 October 2021, 298–303.

http://dx.doi.org/10.1109/APCC49754.2021.9609824⏎

19.Yasar, K. (2022) Elastic Stack (ELK Stack). Available at:

www.techtarget.com/searchitoperations/definition/Elastic-Stack [Accessed

20 October 2024].⏎

20.Hariawan, F. R. and Sunaringtyas, S. U. (2022) ‘Design an Intrusion

Detection System, Multiple Honeypot and Packet Analyzer Using Raspberry

Pi 4 for Home Network’, in 2021 17th International Conference on Quality in

Research (QIR): International Symposium on Electrical and Computer

Engineering. Depok, Indonesia, 13–15 October 2021, pp. 43–48.

https://doi.org/10.1109/QIR54354.2021.9716189⏎

21.Waldman, A. (2024) ‘Microsoft confirms DDoS attack disrupted cloud

services’, TechTarget, 31 July. Available at:

www.techtarget.com/searchsecurity/news/366599523/Microsoft-confirms-

DDoS-attack-disrupted-cloud-services [Accessed 25 November 2024].⏎

22.Waleed, A., Jamali, A. F. and Masood, A. (2022) ‘Which open-source IDS?

Snort, Suricata or Zeek’, Computer Networks, 213, p. 109116.

https://doi.org/10.1016/j.comnet.2022.109116⏎

https://doi.org/10.1109/ICCWorkshops50388.2021.9473869
https://doi.org/10.62411/faith.2024-33
https://doi.org/10.1109/BigComp.2018.00044
https://doi.org/10.1109/ICECOS47637.2019.8984494
http://www.stamus-networks.com/suricata-vs-snort#:~:text=Suricata%E2%80%99s%20ability%20to%20handle%20high,networks%20with%20heavy%20traffic%20loads
http://dx.doi.org/10.1109/APCC49754.2021.9609824
http://www.techtarget.com/searchitoperations/definition/Elastic-Stack
https://doi.org/10.1109/QIR54354.2021.9716189
http://www.techtarget.com/searchsecurity/news/366599523/Microsoft-confirms-DDoS-attack-disrupted-cloud-services
https://doi.org/10.1016/j.comnet.2022.109116

Chapter 6

Federated Machine

Learning Algorithm

Aggregation Strategy for

Collaborative Predictive

Maintenance

Bhavna Saini, Vivek Kumar Verma, Bharat

Singh, and Nidhi Kushwaha

DOI: 10.1201/9781003610168-6

6.1 Introduction

A key component of Industry 4.0, where automation, digital

transformation, and the Internet of Things (IoT) are essential

to upgrading industrial processes, is predictive maintenance

(PdM). PdM eliminates the need for reactive maintenance

and manual inspections by utilizing real-time sensor data,

cloud computing, and advanced analytics to enable

automated decision-making processes. The objectives of

Industry 4.0, which include developing self-optimizing

http://doi.org/10.1201/9781003610168-6

systems that can function intelligently without human

assistance, are perfectly aligned with this. Additionally, the

smooth connectivity made possible by IoT device

integration enables predictive models to continuously

assess the condition of equipment and recommend

preventative actions. In addition to improving operational

efficiency, this integrated ecosystem makes sure that firms

maintain their competitiveness in a continually changing

technological context [1].

Unplanned downtime is a serious problem for industries,

frequently resulting in major financial losses, operational

delays, and damage to one’s reputation. PdM reduces these

risks by addressing potential equipment failures before they

happen, which can save a significant amount of money. For

example, research indicates that unscheduled industrial

downtime can cost businesses up to $260,000 per hour,

while energy sector disruptions, including power outages or

turbine problems, can result in millions of dollars in lost

revenue. Equipment failures in the transportation industry

can cause delays in services, raise maintenance costs, and

interrupt vital supply lines. PdM not only lowers these costs

but also maximizes resource allocation by extending the life

of machinery and reducing unnecessary repairs.

The economic benefits of PdM make it a crucial strategy

for sustainable operations as firms increasingly prioritize

cost efficiency. PdM is used in many different industries,

each with its own set of requirements and difficulties. IoT-

enabled wind turbines can track variables like temperature,

rotating speed, and vibration, allowing for the early

identification of generator problems or blade fatigue in

renewable energy. Predictive analytics can evaluate the

operation of robotic arms and conveyor systems in

automotive assembly lines to spot possible issues before

they interfere with output. Similar to this, IoT-enabled

transformers and substations in power grids may anticipate

overheating or electrical surge-related breakdowns,

guaranteeing a steady supply of electricity and cutting down

on maintenance times.

In a variety of industrial industries, these examples show

how PdM not only increases efficiency but also guarantees

safety and dependability. With a focus on PdM in FOG and

EDGE computing environments, this chapter aims to provide

a thorough analysis of algorithm aggregation options inside

Federated Learning (FL). Possible solutions found in the

most recent literature are examined alongside important

problems such as data heterogeneity, communication

barriers, and resource restrictions. Figure 6.1 illustrates the

FL architecture designed for collaborative PdM, in which a

number of edge devices, including industrial machines with

sensors, are essential components.

Figure 6.1 Federated learning for predictive

maintenance.⏎

To build a thorough global model that incorporates

knowledge from the whole fleet of equipment, the central

server compiles these updates from all participating

devices. To ensure that everyone benefits from the

collective learning without jeopardizing data privacy, this

global model is then redistributed to the edge devices. Until

https://calibre-pdf-anchor.a/#a517

the prediction model reaches the required degree of

accuracy and dependability, this iterative process of local

training, central aggregation, and worldwide dissemination

is repeated. Organizations can improve their PdM methods

and guarantee timely interventions while upholding strict

data privacy rules by utilizing this FL architecture. Data from

multiple industrial equipment and sensors is sent to a single

server for processing and analysis in centralized PdM

designs, like the one shown in Figure 6.2.

Figure 6.2 Centralize predictive maintenance.⏎

It can be prohibitively time-consuming to transfer raw

data to a central server, process it, and then provide

actionable insights back to the edge devices in high-

https://calibre-pdf-anchor.a/#a519

frequency data environments like smart grids or factory

assembly lines. Further aggravating delay problems are

network dependability and bandwidth limitations as IoT

implementations spread across widely separated locations.

Because edge-based PdM solutions may process data closer

to the source and provide real-time insights with minimal

delay, these restrictions underscore the need for them. A

central server processes raw data from multiple devices and

sensors in traditional PdM techniques, which frequently rely

on centralized machine learning models.

Although this makes comprehensive analysis possible, it

raises serious privacy and security issues, especially in

sectors like healthcare and critical infrastructure that handle

sensitive data. Additionally, centralized systems raise the

possibility of data breaches during storage and transfer,

which is especially troublesome in settings with strict

compliance requirements like General Data Protection

Regulation (GDPR) [2]. Furthermore, centralized

infrastructures may not be able to handle the massive

amount of data produced by IoT devices in contemporary

industrial systems, which could result in bottlenecks and

decreased system efficiency [3]. These difficulties highlight

the necessity of decentralized strategies like FL, which can

maintain data localization while facilitating powerful

predictive analytics.

6.1.1 Latency Issues

Due to latency created during data processing and

transmission, centralized PdM systems are inherently limited

in their ability to make decisions in real time. This delay can

have disastrous effects in industrial settings where prompt

action is essential to avert equipment malfunctions or safety

issues [4]. For instance, the time required to transmit raw

data to a central server, process it, and transmit actionable

insights back to the edge devices can be prohibitive in high-

frequency data environments like smart grids or factory

assembly lines [5]. Furthermore, latency problems are made

worse by network stability and bandwidth limitations when

IoT implementations spread across widely separated

locations [6]. These drawbacks emphasize the necessity of

edge-based PdM systems, which can process data nearer to

the source and provide insights in real time with little delay.

As shown in Figure 6.3, data from several industrial

machines and sensors is sent to a central server for

processing and analysis in centralized PdM architectures.

Due to processing delays and data transmission durations,

this centralized solution might introduce significant latency.

This is especially troublesome in situations where real-time

decision-making is necessary to avoid safety concerns or

equipment breakdowns. Furthermore, latency problems are

made worse by network stability and bandwidth limitations

as IoT implementations spread across widely separated

locations.

Figure 6.3 Latency in centralized predictive

maintenance.⏎

https://calibre-pdf-anchor.a/#a530

6.1.2 Resource Constraints

Because industrial IoT devices create large amounts of data,

centralized PdM solutions frequently need a large amount of

processing and storage power. The processing power of

edge or fog devices is limited, which presents a problem,

particularly in resource-constrained contexts [7]. The

centralized method significantly raises the cost of managing

the computing load and maintaining massive data centers

[8]. Continuous data transfers to central servers can also

cause high energy usage and network bandwidth pressure,

which is unsustainable for many enterprises [9]. These

limitations highlight the necessity for lightweight,

decentralized techniques like FL to maximize resource

consumption while preserving PdM efficacy, as centralized

systems are less practical for applications in distributed and

resource-limited contexts.

Large volumes of operational data are continuously

transmitted by a large number of industrial IoT devices to a

central server for analysis in the systems shown in Figure

6.4. To handle and process the incoming data streams, this

centralized method necessitates a significant amount of

processing power and storage space at the central server.

This centralized method may result in higher maintenance

expenses for large-scale data centers and computational

load management in settings where edge or fog devices

have limited processing capability. Many organizations

cannot handle the significant energy usage and network

bandwidth strain caused by continuous data transfer to

central servers. Because of these limitations, applications in

distributed and resource-constrained environments find

centralized systems less practical, highlighting the necessity

https://calibre-pdf-anchor.a/#a539

of lightweight, decentralized techniques like FL to maximize

resource use while maintaining PdM efficacy.

Figure 6.4 Resource constraints in centralized

predictive maintenance.⏎

6.2 Federated Learning: A Paradigm for

Collaborative Predictive Maintenance

In many industries, PdM has emerged as a key component

for increasing operational effectiveness and decreasing

downtime. Conventional PdM techniques frequently depend

on centralized data gathering and analysis, raising issues

with data security, privacy, and latency. By facilitating

cooperative model training across numerous devices or

organizations without requiring the sharing of raw data, FL

emerges as a paradigm-shifting technique that tackles

these issues. FL enables individual entities to train models

on their local data in the context of PdM, sharing only the

model parameters with a central server. In addition to

protecting data privacy, this decentralized strategy makes

use of everyone’s combined intelligence to create reliable

prediction models. By integrating FL into PdM strategies,

organizations can achieve more accurate and timely

predictions, leading to proactive maintenance actions and

significant cost savings.

6.2.1 Overview of Predictive Maintenance

In order to identify possible failures before they happen,

PdM is a proactive approach that uses data analysis tools

and techniques to identify abnormalities in operational

processes and equipment. By scheduling maintenance tasks

at the most convenient periods, this method enables

businesses to minimize unscheduled downtime and lower

operating expenses. PdM implementation is the ongoing

observation of machinery using a variety of sensors that

gather information on variables like temperature, vibration,

pressure, and other pertinent metrics. This data is then

subjected to sophisticated analytics and machine learning

algorithms in order to forecast equipment breakdowns and

optimize maintenance plans [10]. PdM has been much more

effective in recent years as a result of the use of machine

learning.

Conventional maintenance techniques, such as reactive

maintenance, which fixes equipment after it breaks down,

and preventive maintenance, which does maintenance at

predetermined intervals, can result in needless maintenance

tasks or unplanned equipment breakdowns. PdM, on the

other hand, uses data-driven insights to forecast failures so

that maintenance is only carried out when required. This

enhances operational effectiveness and safety in addition to

prolonging the equipment’s lifespan [11, 12]. The use of

PdM has been further accelerated by the emergence of the

Industrial Internet of Things (IIoT). IIoT makes it possible for

machines and devices to link seamlessly, which makes it

easier to collect and analyze enormous volumes of data in

real time. More precise forecasts of the condition and

functionality of the equipment are made possible by this

connectivity, which results in better maintenance plans.

6.2.2 Application of FL in PdM Offers Several

Advantages

Data security and privacy are addressed by FL by storing

the raw data on local devices and only communicating

model parameters. This is crucial for sectors that handle

sensitive data.

Decreased bandwidth usage and delay: The method lowers

the quantity of data transferred between devices and the

central server by just transmitting model parameters, which

results in decreased bandwidth usage and delay.

Scalability: FL eliminates the requirement for a

centralized data repository by enabling PdM systems to

scale across multiple devices and locations. Recently, the

incorporation of FL into PdM systems has been investigated.

A one-dimensional (1D) convolutional neural network-

bidirectional long short-term memory (1DCNN-BiLSTM)

model, for example, was proposed by Ahn et al. [13] for the

purpose of detecting time series anomalies and performing

PdM in manufacturing processes.

The model efficiently extracts features from time series

data and identifies abnormalities by combining a

bidirectional LSTM with a 1D convolutional neural network.

The study showed that by integrating this model with an FL

framework, PdM can be done effectively while taking

distributional variations in time series data into account.

With a test accuracy of 97.2%, the suggested framework

showed promise for practical uses. Pruckovskaja et al. [14]

assessed the effectiveness of several FL aggregation

techniques in the context of quality control and PdM in

another investigation. According to the study, the data and

how it is distributed among clients have a significant impact

on the success of FL. FL can occasionally be a useful

substitute for conventional central or local training

techniques.

In order to provide useful insights into the actual

application of FL in industrial settings, the study also

presented a new FL dataset from a real-world quality

inspection context. An FL technique that uses vibration

sensor data from rotating machinery for condition

monitoring and PdM was also proposed [15]. The method

preserves data privacy and lessens reliance on the network

by enabling distributed training on edge devices near the

observed computers. Using real-world datasets for

evaluation, it was found that the approach dramatically

lowers resource and network utilization while enabling

competitive performance when compared to prior results.

These studies demonstrate how FL may improve PdM

systems by addressing issues with data privacy, lowering

latency, and enhancing scalability. To fully reap the benefits

of FL in PdM applications, however, issues including data

heterogeneity, communication overhead, and resource

limitations in edge and fog computing environments must

be carefully considered.

6.3 Aggregation Strategies in Federated

Learning

Aggregation techniques are essential for merging locally

trained models from several clients into a single global

model in FL. Federated Averaging (FedAvg), the fundamental

technique, calculates a weighted average of the model

parameters of each client, with weights usually

proportionate to the size of each client’s dataset. However,

in situations with heterogeneous data, this strategy may

encounter difficulties [16]. Advanced aggregation

approaches have been developed to address this issue. The

Grouped Federated Averaging (GFedAvg) technique, for

example, enhances model performance in non-IID

environments by classifying clients according to data

similarity prior to aggregation, improving upon FedAvg. A

crucial area of research and development is the choice of

aggregation approach, which has a substantial impact on

the FL process’s robustness, efficiency, and convergence

[17].

A coherent global model can be created by integrating

locally trained models from several clients using the

aggregation procedures shown in Figure 6.5. FedAvg, the

fundamental technique, uses private data to train a local

model on each client, which then transmits the updated

model parameters to a central server. The updated global

model is created by the server combining these parameters

and calculating a weighted average, usually based on the

amount of each client’s dataset. The global model is

redistributed to clients for additional local training in an

iterative process that continues until convergence is

reached. FedAvg, however, may face difficulties in

heterogeneous data environments, where the distribution of

data among customers is identically distributed but not

independent (non-IID).

https://calibre-pdf-anchor.a/#a555

Figure 6.5 Federated learning (FL) aggregation

strategy.⏎

In these situations, the diverse data distributions may

cause the local models to diverge considerably, resulting in

a global model that might not function at its best for every

client. To tackle this problem, sophisticated aggregation

methods have been created. By classifying clients according

to data similarity prior to aggregation, the GFedAvg

algorithm, for example, improves FedAvg [18]. Model

updates within each group are collected, and the global

model is updated by combining these group-level

aggregates. With this method, similar data distributions are

considered together during aggregation, which should

enhance model performance in non-IID circumstances. The

effectiveness, robustness, and convergence of the FL

process are all strongly impacted by the aggregating

approach selected.

6.3.1 The Foundational Aggregation Algorithm

FL is a decentralized machine learning technique that allows

several clients to work together to build a common global

model without exchanging local data. By allowing individual

data sources to stay on-device, this paradigm reduces the

risks associated with centralized data storage, which is

especially advantageous in situations where data privacy

and security are crucial. As the fundamental aggregation

approach, the FedAvg algorithm is at the core of FL. A

selection of participating customers receives an initial global

model as part of FedAvg’s operation. Then, each client trains

locally using their own private data, adjusting the model’s

parameters as necessary. Clients send back to a central

server their updated model parameter following the

completion of the local training.

To create a new global model, the server combines these

updates by calculating a weighted average, usually

determined by the amount of each client’s dataset. Until the

model converges to a performance level that is satisfactory,

this iterative process keeps on. The FedAvg algorithm is a

good fit for FL since it has a number of benefits. First, since

raw data is never sent across a network, it improves privacy

preservation by keeping data locally. Second, because

clients and the server simply exchange model parameters

rather than complete datasets, it lowers communication

overhead. This effectiveness is especially crucial in settings

with reduced bandwidth or when clients are devices with

limited resources. FedAvg does have certain difficulties,

though. One major problem is data heterogeneity, which

occurs when data is not equally dispersed and independent

across clients (non-IID). Under such circumstances, the local

models that have been trained on different data may differ

greatly, resulting in a global model that may not function as

well for all customers [19]. Furthermore, different clients’

computational capacities and rates of engagement may

have an impact on the training process’s stability and

convergence. Numerous improvements to the FedAvg

algorithm have been suggested by experts in order to

overcome these issues. For example, some strategies

incorporate regularization techniques to lessen the impact

of non-IID data, while others modify the aggregation weights

to take client reliability or data quality into consideration.

Despite these advancements, FedAvg remains the

cornerstone of aggregation strategies in FL, providing a

foundation upon which many modern FL algorithms are

built.

6.3.2 Advanced Aggregation Techniques

Since FL allows several clients to jointly train a common

global model without exchanging local data, it has attracted

a lot of interest as a decentralized machine learning

technique. By allowing individual data sources to stay on-

device, this paradigm reduces the risks associated with

centralized data storage, which is especially advantageous

in situations where data privacy and security are crucial. As

the fundamental aggregation approach, the FedAvg

algorithm is at the core of FL.

A new global model is created by the server by combining

these updates and calculating a weighted average, usually

based on the amount of each client’s dataset. This iterative

procedure keeps going until the model converges to a level

of performance that is suitable. With a number of benefits,

the FedAvg algorithm is a good fit for FL. First, it improves

privacy preservation by keeping data locally because raw

data is never sent over the network. Second, it lowers

communication overhead because clients and the server

simply exchange model parameters rather than complete

datasets. In settings with finite bandwidth or where clients

are devices with limited resources, this efficiency is very

crucial. FedAvg does have certain difficulties, though.

The distribution of data among customers is not

independent and identical (non-IID), which is a major

problem caused by data heterogeneity. When this happens,

the local models that were trained on different data sets

may differ greatly, which could result in a global model that

isn’t the best for all of the customers. Diverse customer

engagement rates and computational capacities can also

impact the training process’s stability and convergence.

Scholars have suggested a number of improvements to the

FedAvg algorithm in order to overcome these difficulties. For

example, some methods add regularization techniques to

lessen the effects of non-IID data, while others modify the

aggregate weights to account for data quality or client

trustworthiness. Despite these advancements, FedAvg

remains the cornerstone of aggregation strategies in FL,

providing a foundation upon which many modern FL

algorithms are built.

6.3.2.1 FedProx

FL enables decentralized model training across multiple

devices, allowing each to train on its local data and share

model updates with a central server. A significant challenge

in FL lies in system heterogeneity, where devices have

varying computational capabilities and data distributions.

This variability can lead to instability and divergence during

the training process. To address these challenges, the

Federated Proximal (FedProx) algorithm was introduced.

FedProx modifies the standard FL objective by incorporating

a proximal term into the local loss functions. This proximal

term acts as a regularization factor, constraining the local

model updates to remain close to the current global model

parameters. By doing so, FedProx mitigates the impact of

system heterogeneity, ensuring that local updates do not

deviate excessively from the global model, thereby

enhancing stability during training. The proximal term in

FedProx is scaled by a parameter µ, which controls the

strength of the regularization. A larger µ places a stronger

emphasis on keeping local updates close to the global

model, which can be beneficial in highly heterogeneous

environments [20]. Conversely, a smaller µ allows for more

significant local updates, which may be advantageous when

devices have similar data distributions and computational

capabilities. This flexibility enables FedProx to adapt to

various levels of system heterogeneity, balancing the trade-

off between local adaptation and global consistency.

Empirical studies have demonstrated that FedProx provides

more robust convergence compared to traditional FL

algorithms, especially in settings with significant

heterogeneity. By allowing devices to perform a variable

amount of local computation and incorporating the proximal

term, FedProx effectively addresses the challenges posed by

system variability, leading to improved performance and

stability in federated learning environments.

The FedProx algorithm addresses challenges associated

with system and statistical heterogeneity by introducing a

proximal term to the local objective functions. This proximal

term serves as a regularization factor, constraining local

updates to remain close to the global model parameters,

thereby enhancing stability during training. For instance, in

a network of hospitals collaboratively developing a

predictive model for patient readmission rates, each

hospital trains a local model on its private patient data and

shares the updated model parameters with a central server.

Due to differences in patient demographics and treatment

protocols, the data distributions across hospitals are

heterogeneous. FedProx mitigates the impact of this

heterogeneity by incorporating the proximal term, ensuring

that local updates do not deviate excessively from the

global model, leading to more robust convergence and

improved model performance across the network.

In the context of federated learning, the FedProx

algorithm addresses challenges associated with system and

statistical heterogeneity by introducing a proximal term to

the local objective functions. This proximal term serves as a

regularization factor, constraining local updates to remain

close to the global model parameters, thereby enhancing

stability during training. For instance, in a network of

hospitals collaboratively developing a predictive model for

patient readmission rates, each hospital trains a local model

on its private patient data and shares the updated model

parameters with a central server. Due to differences in

patient demographics and treatment protocols, the data

distributions across hospitals are heterogeneous. FedProx

mitigates the impact of this heterogeneity by incorporating

the proximal term, ensuring that local updates do not

deviate excessively from the global model, leading to more

robust convergence and improved model performance

across the network (Figure 6.6).

https://calibre-pdf-anchor.a/#a566

Figure 6.6 FedProx in collaborative healthcare.⏎

6.3.2.2 FedMA

In FL, effectively aggregating models from clients with non-

independent and identically distributed (non-IID) data poses

significant challenges. The Federated Matched Averaging

(FedMA) algorithm addresses this issue by constructing the

global model in a layer-wise manner. Specifically, FedMA

matches and averages hidden elements—such as channels

in convolutional layers, hidden states in LSTMs, and neurons

in fully connected layers—that exhibit similar feature

extraction characteristics across client models. By aligning

and combining these analogous components, FedMA

enhances the global model’s performance in non-IID

settings. Empirical studies have demonstrated that FedMA

not only outperforms traditional FL algorithms like FedAvg

on deep neural network [21] architectures but also reduces

communication overhead during training [22] (Figure 6.7).

https://calibre-pdf-anchor.a/#a572

Figure 6.7 FedMA aggregating models.⏎

6.3.2.3 FedNova

In FL, client heterogeneity—stemming from variations in

local data distributions and computational capabilities—can

lead to inconsistencies in model updates, adversely

affecting convergence. To address this, the Federated

Normalized Averaging (FedNova) algorithm normalizes local

updates by the number of local iterations each client

performs, ensuring that each client’s contribution to the

global model is appropriately scaled. This normalization

accounts for disparities in client computation, leading to

more consistent and stable convergence across diverse

client environments (Figure 6.8).

https://calibre-pdf-anchor.a/#a575

Figure 6.8 FedNova aggregating models.⏎

The client devices often exhibit significant variability in

computational capabilities and data distributions, leading to

differences in the number of local updates each client

performs during a training round. This heterogeneity can

cause objective inconsistency, where the global model

converges to a stationary point of a mismatched objective

function, potentially diverging from the true objective. The

FedNova algorithm addresses this issue by normalizing local

updates according to each client’s training progress.

Specifically, FedNova adjusts the aggregation of local

models by accounting for the number of local updates

performed by each client, thereby eliminating objective

inconsistency and preserving fast error convergence. This

approach ensures that the global model accurately reflects

the contributions of all clients, regardless of their individual

computational capacities or data heterogeneity.

6.3.3 Optimization through Metaheuristics

Optimizing aggregation algorithms is essential in FL to

balance computational efficiency and model performance,

particularly in situations with limited resources. To improve

these aggregation techniques, metaheuristic algorithms like

Genetic Algorithms (GAs) and Particle Swarm Optimization

(PSO) have been used. PSO optimizes a problem by

iteratively enhancing potential solutions in relation to a

specified quality metric, drawing inspiration from the social

behavior of bird flocks. PSO can be used in FL to find the

best aggregation weights, which will increase the global

model’s accuracy and rate of convergence. The selection

and combination of local models in FL have also been

optimized through the use of GAs, which simulate the

natural selection process.

GAs are able to efficiently look for optimal or nearly

optimal aggregation procedures that strike a balance

between resource usage and performance by evolving a

population of candidate solutions. These metaheuristic

techniques provide adaptable and effective ways to improve

FL aggregation, especially when handling diverse data

distributions and client-specific processing resources. In

contexts with limited resources, aggregation strategy

optimization is essential for striking a balance between

computational efficiency and model performance. The social

behavior of fish schools or flocks of birds serves as an

inspiration for PSO. PSO can be applied to FL to find the best

aggregation weights for merging local models into a global

model. [23–27]

Every particle in the swarm is a collection of aggregation

weights that could be a solution. In order to converge

toward ideal weights that minimize a predetermined loss

function, these particles modify their placements in

response to both their own and nearby particles’

experiences. When several client devices contribute to a

global model, for instance, PSO can maximize each client’s

model update contribution, improving convergence rates

and model correctness. By using operations like selection,

crossover, and mutation to evolve solutions over

generations, GAs replicate the process of natural selection.

GA is able to choose and combine local models in FL in an

optimal manner. Each member of the population might, for

example, represent a subset of the client models that were

chosen for aggregation. By using iterative evolution, the GA

finds subsets that, when combined, produce a global model

with good performance. This method is especially helpful

when choosing the best subset of client models is difficult

because of resource limitations or different client data

quality.

A global objective function F(w)=∑k=1KpkFk(w), where pk

is the relative contribution weight of client k and Fk(w) is the

local objective function of client k. The objective of

metaheuristic algorithms is to minimize the global loss F(w)

by optimizing the aggregation weights pk. Particles in PSO

adjust their positions (weights) according to velocity vectors

that are impacted by both individual and collective

experiences. Over iterations, candidate solutions

(aggregation techniques) in GAs are developed to enhance

the performance of the global model. By integrating

metaheuristic optimization techniques into FL aggregation

strategies, it is possible to achieve a more efficient balance

between model accuracy and computational resource

utilization, thereby enhancing the overall effectiveness of FL

systems.

6.4 Challenges in Fog and Edge Environments

The constraints of standard cloud computing have been

addressed by fog and edge computing, which have become

key paradigms, especially for applications that need real-

time processing and low latency. These methods improve

responsiveness and lower bandwidth use by decentralizing

data processing and putting it closer to the data source.

However, there are a number of difficulties brought about by

the dispersed character of fog and edge situations. The

deployment of fog nodes at the edge of the network

exposes sensitive data, making them potential targets for

cyberattacks, raising serious concerns about data privacy.

The large number of linked devices and gateways, each with

its own set of vulnerabilities, makes security problems much

worse. Another significant issue is interoperability; the wide

range of edge devices and fog nodes frequently lack

established protocols, making it difficult to integrate and

work together seamlessly [28].

Furthermore, overseeing a dispersed infrastructure

introduces complexity, requiring strong tools and techniques

to track and improve performance. For fog and edge

computing systems to be implemented and run effectively,

certain issues must be resolved.

6.4.1 Data Heterogeneity

Effective model training and convergence in fog and edge

computing environments are significantly hampered by data

heterogeneity. These networks’ decentralized structure

makes it more difficult to create reliable machine learning

models since they provide a variety of non-IID (different,

non-independent, and identically distributed) data across

devices. Clustered federated learning (CFL) has been

suggested as a solution to this problem. By clustering

devices with comparable data distributions, CFL enables the

training of specialized models within each group. This

method adapts learning procedures to the unique features

of each cluster’s data, improving model performance. For

example, the Iterative Federated Clustering Algorithm

efficiently handles data heterogeneity in FL environments by

switching between estimating user cluster IDs and

optimizing model parameters for each cluster.

6.4.2 Communication Overhead

Iterative transmission of model updates between multiple

edge devices and a central server creates a substantial

communication cost for FL in fog and edge computing

environments. Especially in environments with limited

bandwidth, this frequent communication can put a burden

on network resources and raise latency. Techniques like

model compression and gradient scarification have been

developed to lessen these difficulties. Gradient scarification

reduces the quantity of data supplied without sacrificing

model performance by only sending the most important

gradients at each update. For example, considerable data

reduction during model training can be accomplished by

using gradient scarification in wireless traffic prediction. By

lowering the size of the model parameters shared between

devices and the server, model compression techniques like

quantization and encoding further reduce communication

costs. FL systems can improve scalability and performance

in fog and edge environments by putting these strategies

into practice and achieving more effective communication.

6.4.3 Resource Constraints

Devices in fog and edge computing environments frequently

work with strict resource limitations, such as constrained

memory, computational power, and energy capacity. These

restrictions make it difficult to execute FL, which usually

calls for a large investment of resources for both

communication with central servers and training local

models. In response to these difficulties, researchers have

devised methods like selective participation and quantized

updates to produce lightweight algorithms appropriate for

environments with limited resources. By diminishing the

accuracy of model parameters as they are being

transmitted, quantized updates lower the volume of data

that is exchanged between servers and devices. By

allocating distinct bit-widths to different layers of a deep

learning network, for instance, mixed-precision quantization

successfully strikes a balance between resource usage and

model accuracy.

This method reduces the processing and communication

requirements, enabling devices with minimal capacity to

take part in FL. By using a subset of devices in each training

round, selective participation procedures further increase

efficiency. The system can maximize resource consumption

and preserve model performance by carefully choosing

participants based on factors like the importance of their

local data or the availability of resources at the moment. An

adaptive federated learning system, for example, would

enable edge devices to independently update local models,

allowing for sporadic connectivity and fluctuating resource

limitations. By putting these strategies into practice, FL

systems can function well with fog and edge devices,

encouraging a wider uptake of decentralized learning in

settings with limited resources.

6.5 Applications of Federated Learning in

Predictive Maintenance

PdM aims to anticipate equipment failures by analyzing data

collected from machinery, thereby optimizing maintenance

schedules and reducing unexpected downtimes. FL has

emerged as a pivotal technology in this domain, enabling

collaborative model training across decentralized devices

while preserving data privacy. This section explores the

applications of FL in PdM, focusing on equipment

monitoring, fault diagnosis, and energy optimization.

6.5.1 Equipment Monitoring

In industrial settings, continuous equipment monitoring is

essential for maintaining operational efficiency. Traditional

centralized approaches to condition monitoring often require

transferring vast amounts of sensor data to central servers,

posing challenges related to data privacy and network

reliability. FL addresses these issues by facilitating the

decentralized training of machine learning models directly

on edge devices located near the machinery. For instance,

Becker et al. [29] proposed an autoencoder-based FL

method utilizing vibration sensor data from rotating

machines. This approach enables distributed training on-

premises, allowing knowledge transfer across organizational

boundaries without sharing raw data, thereby preserving

privacy and reducing network load.

6.5.2 Fault Diagnosis

Accurate fault diagnosis is critical for preventing equipment

failures and ensuring safety. FL enhances fault diagnosis by

enabling the development of robust models trained on

diverse datasets from multiple sources without

compromising data confidentiality. By aggregating

knowledge from various industrial environments, FL-based

models can achieve improved generalization and fault

detection capabilities. This collaborative approach allows for

the identification of fault patterns that may not be apparent

within isolated datasets, leading to more reliable and timely

fault diagnosis.

6.5.3 Energy Optimization

Energy consumption is a significant concern in industrial

operations, both from a cost and an environmental

perspective. FL contributes to energy optimization by

facilitating the development of models that analyze

operational data to identify energy-saving opportunities. By

collaboratively training models across different facilities,

organizations can uncover best practices and operational

adjustments that lead to reduced energy usage. This

decentralized approach ensures that sensitive operational

data remains on-site, addressing privacy concerns while

promoting energy-efficient practices across the industry. FL

offers a transformative approach to PdM by enabling

collaborative, privacy-preserving model training for

equipment monitoring, fault diagnosis, and energy

optimization. Its application in industrial settings not only

enhances the accuracy of predictive models but also fosters

cross-organizational collaboration without compromising

data security.

6.6 Key Research Gaps and Future Directions

FL has garnered significant attention due to its potential to

enable collaborative model training without compromising

data privacy. However, several research gaps exist that

hinder its widespread adoption and efficacy. This section

delves into three critical areas requiring further exploration:

adaptive aggregation mechanisms, enhanced privacy

measures, and scalability challenges.

6.6.1 Adaptive Aggregation Mechanisms

In FL, the central server aggregates model updates from

distributed clients to form a global model. Traditional

aggregation methods, such as FedAvg, often assume

homogeneous data distributions across clients. However, in

practical scenarios, data is typically non-IID, leading to

suboptimal model performance. To address this, researchers

have proposed adaptive aggregation techniques that

account for data heterogeneity. For instance, Yeganeh et al.

[30] introduced the inverse distance aggregation method,

which assigns weights to client updates based on the

distance between local and global model parameters,

thereby mitigating the impact of outliers and enhancing

convergence rates.

6.6.2 Enhanced Privacy Mechanisms

While FL inherently promotes data privacy by keeping raw

data on local devices, vulnerabilities remain, particularly

concerning inference attacks that can reconstruct sensitive

information from model updates. To bolster privacy, various

techniques have been explored. Differential privacy (DP)

introduces noise to model updates, obscuring individual

data contributions. Secure multiparty computation (SMC)

enables collaborative computations without revealing

individual inputs. Despite these advancements, challenges

persist in balancing privacy with model utility and

computational efficiency. Recent surveys provide

comprehensive overviews of these privacy-preserving

methods and highlight the need for novel solutions that

effectively integrate DP and SMC within the FL framework.

6.6.3 Scalability Challenges

Scalability remains a significant concern in FL, especially

when dealing with large numbers of clients and substantial

model sizes. Synchronous aggregation methods can lead to

communication bottlenecks and increased latency, as the

central server must wait for updates from all clients.

Asynchronous aggregation offers a potential solution by

allowing the server to update the global model with client

updates as they arrive, thus reducing waiting times. Nguyen

et al. [31] proposed a buffered asynchronous aggregation

approach, FedBuff, which combines the benefits of

synchronous and asynchronous methods. FedBuff maintains

a buffer of incoming updates, enabling efficient aggregation

while remaining compatible with privacy-preserving

techniques like secure aggregation. Empirical results

demonstrate that FedBuff enhances training efficiency and

scalability in FL systems. Addressing these research gaps is

crucial for the advancement and practical deployment of FL

across various domains. Future work should focus on

developing robust adaptive aggregation strategies,

enhancing privacy-preserving mechanisms without

compromising model performance, and designing scalable

FL architectures capable of handling diverse and extensive

client networks.

6.7 Conclusion

FL has emerged as a transformative approach in PdM,

enabling collaborative model training across decentralized

devices while preserving data privacy. By facilitating the

analysis of equipment data without necessitating

centralized data storage, FL addresses critical concerns

related to data confidentiality and network reliability.

Studies have demonstrated the efficacy of FL in various

industrial applications, including condition monitoring and

fault diagnosis. Despite these advancements, several

challenges persist that warrant further research. Adaptive

aggregation mechanisms are needed to address data

heterogeneity among clients, as traditional methods like

FedAvg may not perform optimally with non-IID data

distributions. Enhanced privacy measures are also crucial,

as FL, while inherently privacy-preserving, is still susceptible

to inference attacks that can reconstruct sensitive

information from model updates. Balancing privacy with

model utility and computational efficiency remains an open

area of investigation. Additionally, scalability challenges

must be addressed to accommodate large numbers of

clients and substantial model sizes, with asynchronous

aggregation methods offering potential solutions to reduce

communication bottlenecks and latency. FL offers a

promising framework for PdM by enabling collaborative,

privacy-preserving analysis of equipment data. Ongoing

research focused on adaptive aggregation, robust privacy

mechanisms, and scalable architectures will be pivotal in

realizing the full potential of FL in industrial applications.

References

1.McMahan, B., et al. (2017). Communication-efficient

learning of deep networks from decentralized data.

Proceedings of AISTATS.⏎

2.Kairouz, P., et al. (2021). Advances and open problems in

federated learning. Foundations and Trends in Machine

Learning 14(1–2), 1–210.⏎

3.Zhao, Y., et al. (2018). Federated learning with non-IID

data. Proceedings of NeurIPS.⏎

4.Li, T., et al. (2018). Federated optimization in

heterogeneous networks. Proceedings of MLSys.⏎

5.Yang, Q., Liu, Y., Chen, T. and Tong, Y. (2019). Federated

machine learning: Concept and applications. ACM

Transactions on Intelligent Systems and Technology (TIST)

10(2), 1–19.⏎

6.Bonawitz, K., et al. (2019). Towards federated learning at

scale: System design. Proceedings of SysML.⏎

7.Du, J., Qin, N., Huang, D., Jia, X. and Zhang, Y. (2023).

Lightweight FL: A Low-Cost Federated Learning

Framework for Mechanical Fault Diagnosis with Training

Optimization and Model Pruning. IEEE Transactions on

Instrumentation and Measurement 73, 1–14.⏎

8.de Melo Rosa, G. L., Mohanram, P., Gilerson, A. and

Schmitt, R. H. (2023). Architecture for edge-based

predictive maintenance of machines using federated

learning and multi sensor platforms. Preprints.org; 2023.

DOI: 10.20944/preprints202305.1563.v1.⏎

9.Han, P., Wang, S. and Leung, K. K. (2020, November).

Adaptive gradient sparsification for efficient federated

learning: An online learning approach. In 2020 IEEE 40th

International Conference on Distributed Computing

Systems (ICDCS) (pp. 300–310). IEEE.⏎

10.Felbab, V., Kiss, P. and Horváth, T. (2019, September).

Optimization in federated learning. In ITAT (pp. 58–65).⏎

https://doi.org/10.20944/preprints202305.1563.v1

11.Sun, W., Lei, S., Wang, L., Liu, Z. and Zhang, Y. (2020).

Adaptive federated learning and digital twin for industrial

internet of things. IEEE Transactions on Industrial

Informatics 17(8), 5605–5614.⏎

12.Wangni, J., Wang, J., Liu, J. and Zhang, T. (2018).

Gradient sparsification for communication-efficient

distributed optimization. Advances in Neural Information

Processing Systems 31, 1–11.⏎

13.Ahn, J., Lee, Y., Kim, N., Park, C. and Jeong, J. (2023).

Federated learning for predictive maintenance and

anomaly detection using time series data distribution

shifts in manufacturing processes. Sensors 23(17), 7331.

https://doi.org/10.3390/s23177331⏎

14.Pruckovskaja, V., Weissenfeld, A., Heistracher, C., Graser,

A., Kafka, J., Leputsch, P., Schall, D. and Kemnitz, J. (2023).

Federated learning for predictive maintenance and quality

inspection in industrial applications. arXiv preprint

arXiv:2304.11101. https://arxiv.org/abs/2304.11101⏎

15.Kea, K., Han, Y. and Kim, T-K. (2023). Enhancing anomaly

detection in distributed power systems using

autoencoder-based federated learning. PLoS One 18(8),

e0290337.⏎

16.Ahn, J., Lee, Y., Kim, N., Park, C. and Jeong, J. (2023).

Federated learning for predictive maintenance and

anomaly detection using time series data distribution

shifts in manufacturing processes. Sensors 23(17),

7331.⏎

17.Liu, J., Lou, J., Xiong, L., Liu, J. and Meng, X. (2021).

Projected federated averaging with heterogeneous

differential privacy. Proceedings of the VLDB Endowment

15(4), 828–840.⏎

https://doi.org/10.3390/s23177331
https://arxiv.org/abs/2304.11101

18.Le, K., et al. (2024). Efficiently assemble normalization

layers and regularization for federated domain

generalization. Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition.⏎

19.Ma, X., et al. (2022). A state-of-the-art survey on solving

non-iid data in federated learning. Future Generation

Computer Systems 135, 244–258.⏎

20.Yuan, X. and Li, P. (2022). On convergence of FedProx:

Local dissimilarity invariant bounds, non-smoothness and

beyond. Advances in Neural Information Processing

Systems 35, 10752–10765.⏎

21.Gupta, P., Anand, A., Agarwal, P. and McArdle, G. (2024).

Neural network inspired efficient scalable task scheduling

for cloud infrastructure. Internet of Things and Cyber-

Physical Systems 4, 268–279.⏎

22.Wang, H., et al. (2020). Federated learning with matched

averaging. arXiv preprint arXiv:2002.06440.⏎

23.Mustapha, S. D. S. and Gupta, P. (2024). DBSCAN

inspired task scheduling algorithm for cloud

infrastructure. Internet of Things and Cyber-Physical

Systems 4, 32–39.⏎

24.Gupta, P., Rawat, P. S., kumar Saini, D., Vidyarthi, A. and

Alharbi, M. (2023). Neural network inspired differential

evolution based task scheduling for cloud infrastructure.

Alexandria Engineering Journal 73, 217–230.

25.Madhusudhan, H. S., Gupta, P., Saini, D. K. and Tan, Z.

(2023). Dynamic virtual machine allocation in cloud

computing using elephant herd optimization scheme.

Journal of Circuits, Systems and Computers 32(11),

2350188.

26.Rawat, P. S., Gaur, S., Barthwal, V., Gupta, P., Ghosh, D.,

Gupta, D. and Rodrigues, J. J. C. (2025). Efficient virtual

machine placement in cloud computing environment

using BSO-ANN based hybrid technique. Alexandria

Engineering Journal 110, 145–152.

27.HS, M. and Gupta, P. (2024). Federated learning inspired

Antlion based orchestration for Edge computing

environment. PLoS One 19(6), Art. e0304067.⏎

28.Svorobej, S., et al. (2019). Simulating fog and edge

computing scenarios: An overview and research

challenges. Future Internet 11(3), 55.⏎

29.Becker, S., Styp-Rekowski, K., Stoll, O. V. L. and Kao, O.

(2022). Federated learning for autoencoder-based

condition monitoring in the Industrial Internet of Things.

In IEEE International Conference on Big Data (IEEE

BigData 2022).⏎

30.Yeganeh, Y., et al. (2020). Inverse distance aggregation

for federated learning with non-iid data. Domain

Adaptation and Representation Transfer, and Distributed

and Collaborative Learning: Second MICCAI Workshop,

DART 2020, and First MICCAI Workshop, DCL 2020, Held

in Conjunction with MICCAI 2020, Lima, Peru, October 4–

8, 2020, Proceedings 2. Springer International

Publishing.⏎

31.Nguyen, J., et al. (2022). Federated learning with

buffered asynchronous aggregation. International

Conference on Artificial Intelligence and Statistics.

PMLR.⏎

Chapter 7

Advance Machine Learning

Algorithm Aggregation

Strategy for Decentralized

Collaborative Models

Nayana Singh and Prateek Kumar Soni

DOI: 10.1201/9781003610168-7

7.1 Introduction

Predictive maintenance (PdM) is a critical application of

machine learning (ML) in industrial settings, aimed at

minimizing downtime, reducing maintenance costs, and

improving operational efficiency. By leveraging ML

techniques, PdM systems can analyze sensor data and

operational parameters to predict potential equipment

failures before they occur, enabling timely interventions.

Traditional PdM approaches rely on centralized ML

models, where data from multiple machines, sensors, or

locations is collected and processed in a central server.

http://doi.org/10.1201/9781003610168-7

However, this centralized model presents several

challenges:

Data Privacy Concerns: Industrial and enterprise

data often contain sensitive information that

organizations are unwilling or unable to share due to

regulatory and competitive constraints.

High Data Transmission Costs: Continuously

sending large volumes of sensor and log data to a

central location increases bandwidth usage and

storage costs.

Scalability Limitations: As the number of connected

devices grows, the computational and network burden

on central servers becomes unsustainable.

To address these issues, Federated Machine Learning

(FML) [1] has emerged as a promising alternative. FML

enables multiple edge devices, such as industrial Internet of

Things (IIoT) sensors, manufacturing robots, and predictive

maintenance systems, to collaboratively train a shared ML

model without exchanging raw data. Instead, each device

trains a local model using its own data and only shares

model updates (e.g., gradients or weights) with a central

server or aggregator, ensuring data privacy while

maintaining model accuracy.

One of the key challenges in FML-based predictive

maintenance is aggregating the locally trained models from

different edge devices effectively. The choice of aggregation

strategy significantly impacts the final model’s

performance, robustness, and adaptability to heterogeneous

data distributions across different devices.

This document explores various algorithm aggregation

strategies used in FML for collaborative predictive

maintenance, analyzing their strengths, limitations, and

applicability in real-world industrial environments. By

selecting an appropriate aggregation approach,

organizations can enhance the accuracy, reliability, and

efficiency of PdM solutions while maintaining data security

and minimizing communication overhead.

7.2 Challenges in Federated Predictive

Maintenance

While FML [2] offers a decentralized approach to predictive

maintenance, its implementation comes with several

challenges that must be addressed to ensure effective

model training and deployment. These challenges stem

from industrial constraints such as data security, network

limitations, and the variability in sensor-generated data

across different machines.

7.2.1 Data Privacy and Security

One of the primary motivations for using FML in predictive

maintenance is the need to preserve data privacy and

security. Industrial environments generate vast amounts of

sensitive operational data, including machine performance

metrics, error logs, and sensor readings. Sharing this data

with a central server for traditional ML raises several

concerns:

Regulatory Compliance: Industries such as

healthcare, manufacturing, and energy are subject to

strict data protection regulations (e.g., General Data

Protection Regulation [GDPR] and Health Insurance

Portability and Accountability Act [HIPAA]) that prohibit

the transfer of sensitive operational data outside the

organization’s premises.

Confidentiality Risks: Companies are often reluctant

to share proprietary machine data due to competitive

reasons, as it may contain trade secrets or insights into

operational strategies.

Risk of Cyberattacks: Centralized data storage

makes systems vulnerable to cyber threats, including

unauthorized access, data breaches, and industrial

espionage.

FML mitigates these risks by allowing training to occur

locally on edge devices, but additional security measures,

such as secure aggregation, encryption, and differential

privacy, are necessary to prevent adversarial attacks and

model inversion threats.

7.2.2 Heterogeneous Data Sources

In industrial settings, sensor data is collected from a variety

of machines, each differing in:

Sensor Types and Configurations: Different

equipment manufacturers use different sensors,

leading to variations in data format, resolution, and

measurement units.

Data Sampling Rates: Some machines generate data

at high frequency (e.g., every millisecond), while others

log readings at irregular intervals.

Data Quality and Noise: Variability in environmental

conditions, sensor aging, and calibration differences

introduce inconsistencies in data quality.

Such heterogeneity makes it challenging to train a

generalizable federated model. If local data distributions

differ significantly (a phenomenon known as non-IID data),

the global model may fail to converge or may favor certain

machine types over others. Addressing this requires

advanced aggregation techniques, adaptive learning rates,

and personalized federated learning models.

7.2.3 Communication Overhead

FML reduces the need to transmit raw data, but frequent

model updates between edge devices and the central

aggregator introduce new communication challenges:

Bandwidth Constraints: Industrial environments

often have limited network bandwidth, making it costly

to transmit large model updates frequently.

Network Latency: Synchronizing multiple devices

over a distributed network can lead to delays,

especially when devices are in remote locations with

unstable connectivity.

Asynchronous Updates: Some edge devices may

have higher computational capabilities than others,

leading to straggler effects, where slower devices

delay the overall training process.

To optimize communication efficiency, techniques such as

compressed updates, sparse model sharing, and

asynchronous federated learning are used to reduce

network congestion while maintaining model performance.

7.2.4 Model Convergence

Unlike traditional centralized training, where data is uniform

and well-distributed, federated training must ensure global

model convergence [3] despite disparities in local datasets.

Key challenges include:

Divergent Local Models: Since each device trains on

a unique subset of data, local models may develop

biases that negatively impact global model

performance.

Unbalanced Data Contributions: Some machines

may generate significantly more data than others,

skewing the training process and leading to an

imbalanced model.

Drift in Data Distributions: Equipment behavior and

operating conditions evolve over time, causing data

distributions to shift and reducing model accuracy.

To achieve stable convergence, adaptive federated

optimization algorithms such as Federated Averaging

(FedAvg), momentum-based aggregation, and personalized

federated learning can be employed to balance local

updates while preventing drastic deviations in the global

model.

7.3 Federated Learning Framework for

Predictive Maintenance

FML provides a decentralized approach to PdM by enabling

multiple edge devices, such as industrial sensors, IoT-

enabled machinery, and smart controllers, to collaboratively

train a shared ML model. Unlike traditional ML models,

which require raw data to be centralized, FML ensures that

data remains on the edge devices, improving privacy,

reducing network congestion, and enhancing scalability.

This section details the architecture, workflow, and key

components of an FML-based predictive maintenance

framework.

7.3.1 Overview

The primary goal of the FML framework in PdM [5] is to build

a highly accurate failure prediction model while preserving

data privacy. Instead of transmitting raw sensor data to a

central server, individual edge devices perform local

training and only send model updates, such as gradients or

weights, to a central coordinator. The central coordinator

aggregates updates from multiple edge devices to refine the

global model, which is then redistributed for further training.

This iterative process continues until the global model

reaches an optimal level of accuracy and convergence.

Key benefits of FML in PdM include:

1. Data Privacy and Security: No raw data leaves the

local devices, ensuring compliance with industrial

privacy regulations.

2. Reduced Communication Overhead: Only model

updates, rather than entire datasets, are transmitted,

lowering bandwidth usage.

3. Scalability: The system can support a large number of

edge devices without overloading a centralized server.

4. Adaptability to Edge Conditions: Local training

accounts for variations in machine behavior and

environmental conditions, improving model robustness.

7.3.2 Workflow

The FML framework for PdM follows an iterative training

process, involving multiple rounds of communication

between edge devices and the central coordinator. Below is

a step-by-step breakdown of this workflow:

1. Initialization

The central coordinator initializes a global model

with random or pre-trained weights.

The model architecture and hyperparameters,

such as learning rate and number of epochs, are

defined.

The global model is sent to participating edge

devices, such as industrial sensors and PdM units.

2. Local Training at Edge Devices

Each edge device receives the global model and

trains it locally using its own sensor data.

The training process includes:

Feature extraction: Processing raw sensor data,

such as vibration, temperature, and pressure,

into meaningful features.

Anomaly detection: Identifying early signs of

machine degradation.

Failure prediction: Training the model to predict

failures based on historical trends.

After training, each device computes model

updates, such as weights and gradients, without

sharing raw data.

3. Aggregation of Local Updates

The local model updates from all participating

edge devices are sent to the central coordinator.

The coordinator aggregates these updates using a

chosen aggregation strategy, such as:

FedAvg: Computes a weighted average of

model parameters.

FedProx: A modification of FedAvg that stabilizes

training when devices have non-IID data.

Momentum-Based Aggregation: Assigns higher

importance to recent updates for faster

convergence.

The aggregated model is refined to improve

accuracy and robustness.

4. Global Model Update and Redistribution

The newly aggregated global model is distributed

back to the edge devices.

Each device replaces its local model with the

updated global model.

5. Iterative Training and Convergence

Steps 2–4 are repeated for multiple rounds until

the model achieves satisfactory performance.

Model convergence is assessed based on metrics

such as validation accuracy, loss reduction, and

anomaly detection performance.

The final global model is deployed for real-time

PdM.

7.3.3 Additional Considerations for

Implementation

Optimizing Model Updates to Reduce

Communication Costs

Since frequent model updates can overload

networks, techniques such as the following are used:

Gradient compression: Reducing the size of

transmitted updates.

Sparse updates: Sending only significant

parameter changes.

Asynchronous updates: Allowing edge devices to

send updates at different intervals.

Handling Data and Device Heterogeneity

To ensure model robustness despite differences in

data distributions and device capabilities, the

following techniques are implemented:

Personalized Federated Learning: Fine-tuning

global models on individual devices to account for

their unique data patterns.

Adaptive learning rates: Adjusting the contribution

of devices with high- or low-quality data.

Security Enhancements

Since attackers could tamper with model updates,

the following techniques are applied:

Secure Aggregation: Encrypting updates to

prevent adversarial model poisoning.

Differential Privacy: Adding noise to updates to

enhance data confidentiality.

7.4 Algorithm Aggregation Strategies in

Federated Learning

In FML for predictive maintenance, the aggregation strategy

plays a crucial role in combining local model updates from

multiple edge devices into a robust global model. The

choice of aggregation algorithm directly impacts model

accuracy, convergence speed, communication efficiency,

and the ability to handle data heterogeneity.

This section elaborates on key aggregation strategies,

their working principles, advantages, and associated

challenges.

7.4.1 Federated Averaging

Concept: FedAvg is the most widely used aggregation

strategy in FML. Instead of transmitting updates after every

local training step, edge devices perform multiple local

updates and then send only the final model parameters to

the central server. The server computes a weighted average

of these local models based on the number of data samples

at each edge device:

where the parameters are:

Global model parameters

Local model parameters from device

Number of training samples on device

Total number of training samples across all devices

Number of participating devices

Advantages:

Simple and computationally efficient—requires only

weighted averaging of local models.

Reduces communication frequency by allowing multiple

local updates before aggregation.

Performs well in homogeneous environments where

data distribution is IID (identically and independently

distributed).

Challenges:

Non-IID data degrades performance—if edge devices

have vastly different data distributions, the global

model may converge poorly.

Devices with small datasets contribute less—FedAvg

prioritizes devices with larger datasets, potentially

neglecting smaller but important datasets.

Straggler problem—slower edge devices may delay

global updates, requiring asynchronous solutions.

7.4.2 Federated Stochastic Variance Reduced

Gradient (FedSVRG)

Concept: FedSVRG is designed to improve the stability of

gradient updates in highly non-IID settings. It introduces a

variance-reducing estimator that helps balance global

model updates and local variations. Instead of relying solely

on the latest local updates, FedSVRG maintains a historical

gradient estimate to stabilize the training process.

where the parameters are:

pdated gradient

Previous gradient estimate

Local model gradient update

Gradient of the global model

Average of previous gradient estimates

Learning rate

Advantages:

Improves convergence speed—reduces gradient

variance, leading to more stable training.

More efficient than FedAvg in non-IID settings—handles

varying local data distributions better.

Reduces communication overhead—requires fewer

updates to achieve a well-trained model.

Challenges:

Increased computational burden—each device needs

additional memory and processing for variance

reduction.

Requires fine-tuning of hyperparameters—choosing

appropriate step sizes and learning rates is complex.

7.4.3 Federated Proximal (FedProx)

Concept: FedProx extends FedAvg by adding a proximal

term that regularizes local updates, preventing drastic

changes in model parameters. This helps stabilize training

when there is heterogeneity in edge device capabilities or

data distributions.

The FedProx optimization function includes a proximal

term:

where the parameters are:

Regularized objective function

Local loss function on device

Current model parameters

Previous global model parameters

Proximal term weight (controls how much local updates

deviate from the global model)

Advantages:

Handles heterogeneous edge devices—adapts to

different computational and storage constraints.

Prevents extreme deviations in local models—reduces

the risk of inconsistent updates.

Stabilizes model training in non-IID environments—

regularization ensures that local updates do not

diverge too much.

Challenges:

Computationally expensive—each local update requires

additional regularization computations.

Slower convergence—proximal constraints can make

training more conservative.

7.4.4 Federated Ensemble Learning

Concept: Unlike FedAvg, which merges model parameters,

Federated Ensemble Learning allows each edge device to

train a model independently. Instead of aggregating

weights, the final decision is made using ensemble

techniques such as:

Majority Voting—Each local model makes a

prediction, and the most common prediction is chosen.

Weighted Averaging—Local models with higher

accuracy receive greater weight in final predictions.

Stacking—Outputs from local models are combined

using a meta-learner.

Advantages:

Highly robust to heterogeneous data distributions—

each model specializes in its own data domain.

Improves fault tolerance—if one model fails, others still

contribute to predictions.

Can combine multiple model architectures—allows

different devices to train using different algorithms.

Challenges:

Requires additional storage and computational power—

multiple models must be stored and processed.

Difficult to manage ensemble diversity—similar local

models may not contribute much additional value.

Higher latency in inference—combining multiple model

predictions increases prediction time.

7.4.5 Comparison of Aggregation Strategies

Table 7.1 Different Aggregation Techniques⏎

Strategy Best for Key Benefit

Major

Challenge

FedAvg Homogeneous

environments

Simple and

widely used

Fails with non-

IID data

FedSVRG Non-IID data,

unstable

gradients

Faster

convergence

Extra

computation at

edge devices

FedProx Heterogeneous

devices and

data

Stabilizes

updates

Increased

computational

complexity

Strategy Best for Key Benefit

Major

Challenge

Federated

Ensemble

Highly diverse

edge models

Robustness

to failure

High storage

and

computational

cost

This structured approach ensures that aggregation

strategies are applied effectively based on the specific

challenges of federated PdM (Table 7.1).

7.5 System Architecture of Federated Learning

for Predictive Maintenance

The system architecture of Federated Learning for PdM

consists of multiple components that work together to

enable decentralized model training while preserving data

privacy. This architecture ensures real-time monitoring,

efficient local model updates, and global model aggregation

without requiring raw data transmission.

7.5.1 Data Collection and Preprocessing

7.5.1.1 Data Collection

PdM relies on sensor-generated data from industrial

machines, providing valuable insights into equipment

health. These sensors continuously monitor parameters

such as:

Temperature—Detecting overheating components.

Vibration Levels—Identifying mechanical imbalances.

Pressure—Monitoring hydraulic or pneumatic systems.

Acoustic Signals—Recognizing abnormal sounds in

machinery.

Voltage and Current—Detecting electrical faults.

Each edge device, such as an IoT gateway or industrial

controller, collects data from these sensors in real time.

7.5.1.2 Data Preprocessing

Raw sensor data often contains noise, missing values, or

inconsistencies due to sensor failures, environmental

variations, or communication errors. Preprocessing ensures

that the data is:

Cleaned—Removing outliers and handling missing

values.

Standardized—Normalizing features to a common

scale for consistent training.

Feature-engineered—Extracting useful insights such

as rolling averages, trend analysis, or frequency

domain features using Fourier Transform.

Labeled (if supervised learning is used) —Assigning

failure or anomaly labels based on past maintenance

records.

Once preprocessed, the structured data is stored locally

on edge devices for on-device training, eliminating the need

for cloud storage of raw sensor data.

7.5.2 Local Training Mechanism

Each edge device, such as an IIoT node or factory server,

independently trains a local predictive maintenance model

using its own data. The training mechanism varies based on

the following:

7.5.2.1 Model Type

Deep learning models (Convolutional Neural

Networks [CNNs], Long Short-Term Memory

networks [LSTMs]) [6,7]—Used for complex time-

series analysis and anomaly detection.

Traditional ML models (Random Forest and

Support Vector Machine [SVM]) – Used for

structured, tabular data with historical failure records.

7.5.2.2 Hardware Capabilities

Powerful edge devices—Train deep learning models.

Low-power IoT nodes—se lightweight models like

decision trees or logistic regression.

7.5.2.3 Training Frequency

Batch training—Models train at scheduled intervals

(e.g., every 24 hours).

Real-time adaptation—Models update dynamically

based on streaming data.

Once training is complete, the edge device does not share

raw data but instead transmits only model updates

(gradients or weights) to the aggregation server.

7.5.3 Aggregation Server

The aggregation server plays a critical role in combining

local model updates from multiple edge devices and

redistributing the improved global model. It can be

implemented using the following.

7.5.3.1 Centralized Aggregation Server

A single cloud-based or on-premise coordinator server

collects local updates, aggregates them (using FedAvg,

FedProx, or FedSVRG), and sends the new global model back

to edge devices.

Advantage: Faster aggregation and simpler

implementation.

Challenge: Single point of failure, potential

bottlenecks in large-scale deployments.

7.5.3.2 Blockchain-Based Decentralized Aggregation

A blockchain ledger records model updates from each edge

device in a secure, verifiable manner. Smart contracts

automate the aggregation process without requiring a

central server.

Advantage: Trustless, tamper-proof, and scalable

across multiple industrial facilities.

Challenge: Higher computational overhead for

consensus mechanisms.

7.5.4 Federated Learning Training Cycle in

Predictive Maintenance

1. Initialization—The aggregation server initializes a

global predictive maintenance model.

2. Local Training—Each edge device trains a model

using its own sensor data.

3. Secure Transmission—Local model updates (not raw

data) are encrypted and sent to the aggregation server.

4. Aggregation—The server computes a new global

model using FedAvg, FedProx, FedSVRG, or an

ensemble strategy.

5. Redistribution—The updated global model is sent

back to all edge devices for the next training cycle.

6. Continuous Improvement—The process repeats until

model performance stabilizes.

7.6 Performance Metrics

Evaluating the effectiveness of FML in PdM requires a set of

well-defined performance metrics. These metrics help

assess the model’s predictive accuracy, communication

overhead, and resource efficiency, ensuring its practical

implementation in industrial environments.

7.6.1 Model Accuracy

Model accuracy serves as a fundamental benchmark for

evaluating the reliability of an FML system in predicting

equipment failures. The key aspects include:

Precision and Recall: In PdM, false positives

(incorrect failure predictions) and false negatives

(missed failures) can have significant consequences.

Precision measures how many predicted failures are

actual failures, while recall assesses the model’s ability

to detect all real failures.

F1-Score: A harmonic mean of precision and recall,

providing a balanced evaluation of the model’s ability

to make accurate failure predictions.

Comparison with Centralized Learning: FML

models are often compared against traditional

centralized learning to determine trade-offs between

decentralized learning efficiency and predictive

performance. A successful FML model should perform

comparably to, if not better than, its centralized

counterpart while preserving data privacy.

A well-optimized accuracy metric ensures timely

maintenance actions, reducing unplanned downtime and

improving operational efficiency.

7.6.2 Communication Efficiency

Communication efficiency is crucial in federated learning,

where edge devices collaborate by exchanging model

updates instead of raw data. The number of communication

rounds required for the model to converge directly impacts

network bandwidth and latency. Key factors influencing

communication efficiency include:

Communication Rounds vs. Model Convergence:

The fewer the number of communication rounds

needed for model convergence, the lower the

bandwidth and computational overhead. Optimizing

update frequency ensures a balance between rapid

convergence and minimal data exchange.

Compression Techniques: Methods such as

quantization and sparsification can reduce the size of

model updates, minimizing communication overhead.

Asynchronous Training: Allowing devices to update

the global model at different intervals prevents

bottlenecks caused by slower nodes (stragglers) and

enhances training speed.

Efficient communication ensures real-time

responsiveness, making FML viable for large-scale industrial

applications where latency and network constraints are

critical.

7.6.3 Energy Consumption

Energy consumption is a critical consideration, particularly

in edge computing environments with power-constrained

devices. This metric assesses the energy required for:

Local Model Training: The computational effort

involved in training models on edge devices, which

varies based on model complexity and data volume.

Model Update Transmission: The energy cost of

sending updates to the central aggregator, which can

be reduced using optimized update strategies.

Global Aggregation: The computational expense

incurred by the central server in aggregating multiple

local updates and distributing the refined model.

Strategies such as lightweight model architectures,

adaptive training schedules, and energy-aware aggregation

techniques help optimize power usage, making federated

learning more sustainable for real-world PdM applications.

7.7 Case Studies

FML has been successfully applied across multiple industries

to enhance PdM while addressing concerns about data

privacy, communication efficiency, and resource constraints.

This section explores real-world implementations of FML in

PdM across manufacturing, energy, and healthcare sectors.

7.7.1 Manufacturing Industry: Predictive

Maintenance of Computer Numerical Control

(CNC) Machines Using FML-Based Anomaly

Detection

CNC machines are widely used in manufacturing for

precision cutting, drilling, and shaping of materials. Any

unexpected failure in these machines can lead to costly

downtimes, production losses, and increased maintenance

expenses.

Challenges in Traditional Predictive Maintenance:

High variability in machine usage due to different

operational conditions.

Data privacy concerns related to sharing machine

usage data across plants or suppliers.

High communication costs from transmitting large

volumes of sensor data to a central server.

FML Solution:

IoT sensors installed on CNC machines monitor

vibration, motor temperature, and tool wear.

Local edge devices train anomaly detection models

using historical sensor data to detect early signs of

mechanical degradation.

Instead of transmitting raw sensor data, only model

updates are shared with a central aggregator,

preserving data privacy and reducing bandwidth usage.

The central aggregator refines the global model using

FedAvg and redistributes it to all participating

machines, improving predictive accuracy.

Impact:

Reduced downtime through early fault detection and

proactive maintenance.

Improved data security by keeping sensitive

operational data local.

Lower communication costs by minimizing the need for

frequent cloud transmissions [8].

7.7.2 Smart Grid Systems: Fault Prediction in

Power Transformers with Collaborative Edge-

Based Learning

Power transformers play a crucial role in electricity

transmission and distribution networks. Failure of these

components can lead to large-scale power outages,

economic losses, and safety hazards [9–11].

Challenges in Traditional Fault Prediction:

Decentralized grid infrastructure complicates

centralized data collection.

Heterogeneous transformer specifications and

operating conditions lead to non-uniform data

distributions.

Latency and bandwidth constraints make real-time

fault detection difficult.

FML Solution:

Smart meters and edge sensors in transformers

monitor voltage fluctuations, temperature, and load

variations.

Each transformer’s edge device locally trains a fault

classification model using historical failure patterns and

real-time sensor data.

Only model gradients or weight updates are sent to a

regional energy control center for aggregation,

reducing network congestion.

The aggregated global model is redistributed to all

connected transformers to improve predictive

capabilities.

Impact:

Faster fault detection through real-time edge-based

learning.

Enhanced grid stability by improving transformer

lifespan and performance.

Reduced operational costs through optimized

maintenance scheduling and lower bandwidth usage.

7.7.3 Healthcare Equipment Maintenance:

Remote Monitoring of Medical Devices to

Preemptively Identify Operational Failures

Medical devices such as Magnetic Resonance Imaging (MRI)

scanners, ventilators, and infusion pumps are critical in

healthcare facilities. Equipment failures can disrupt patient

care and lead to serious medical risks.

Challenges in Traditional Healthcare Equipment

Maintenance:

Strict data privacy regulations (e.g., HIPAA and GDPR)

restrict data sharing across healthcare facilities.

High downtime costs associated with delays in

detecting faults in medical devices.

Manufacturer-specific maintenance models make it

difficult to develop a generalized predictive system.

FML Solution:

Edge devices attached to medical equipment

continuously monitor operational parameters such as

temperature, pressure, and mechanical movements.

Local servers at hospitals train predictive maintenance

models to detect early signs of failure.

Instead of transmitting raw patient-related data, only

encrypted model updates are shared with a central

aggregator hosted by medical device manufacturers.

Aggregated models enhance failure prediction

accuracy while ensuring compliance with privacy

regulations.

Impact:

Enhanced equipment reliability through timely

predictive maintenance.

Compliance with privacy laws by avoiding direct

sharing of sensitive patient data.

Cost savings by optimizing preventive maintenance

schedules and reducing emergency repairs.

Key Takeaways from Case Studies:

Enhanced Data Privacy: Sensitive operational data

remains local, reducing exposure risks.

Scalable Predictive Maintenance: Edge-based

training supports large-scale deployment across

industries.

Reduced Communication Overhead: Bandwidth-

efficient learning minimizes network congestion and

operational costs.

Adaptability to Heterogeneous Environments:

FML models adjust to diverse device behaviors,

ensuring robust predictive performance.

By leveraging FML, industries can achieve cost-effective,

secure, and intelligent predictive maintenance, driving

greater operational efficiency and reliability.

7.8 Future Research Directions

As FML continues to evolve, new technologies and

methodologies are emerging to enhance its effectiveness in

PdM. This section explores three key future research

directions: blockchain-enabled federated learning, transfer

learning for FML, and integration with 6G networks.

7.8.1 Blockchain-Enabled Federated Learning

Federated learning relies on a central aggregator to

combine model updates from multiple edge devices, posing

potential security and trust challenges. Blockchain

technology can establish decentralized trust mechanisms

for secure and transparent model aggregation.

Challenges in Traditional FML Model Aggregation:

Trust and security risks due to reliance on a single

aggregator

Vulnerability to model poisoning attacks and data

integrity issues

Lack of transparency and verifiability in model updates

Blockchain-Enabled Solution:

Decentralized model aggregation eliminates

dependence on a central server

Immutable records of model updates ensure data

integrity and traceability

Incentive mechanisms using cryptographic tokens

encourage honest participation

Potential Impact:

Enhanced security and resilience against adversarial

attacks

Trustless collaboration among multiple stakeholders

Improved transparency and auditability in model

training

7.8.2 Transfer Learning for FML

Industrial environments often contain diverse machinery

with different operational characteristics, making it difficult

to train a generalizable PdM model. Transfer learning can

enhance model adaptability across different equipment

types while reducing the need for extensive labeled data.

Challenges in Current FML Implementations:

Heterogeneous data distributions across different

machines

Limited labeled failure data for certain equipment

High computational costs of training separate models

for each machine type

Transfer Learning Approach:

Pretrained global models serve as a starting point for

new machine types

Fine-tuning specific model layers to adapt to new

environments

Few-shot learning to reduce data requirements for new

machines

Potential Impact:

Improved generalization across different industrial

settings

Faster deployment of predictive maintenance models

Reduction in computational and data collection costs

7.8.3 Integration with 6G Networks

The advent of 6G networks will enable ultra-low latency

communication and enhanced edge computing capabilities,

making real-time federated model training feasible for PdM

applications.

Challenges with Current Network Infrastructure

(4G/5G):

Latency issues in large-scale federated learning

deployments

High communication overhead leading to network

congestion

Limited support for real-time processing in edge

environments

6G-Enabled Enhancements:

Sub-millisecond latency allows for near-instantaneous

model updates

Advanced edge computing capabilities support

decentralized processing

AI-driven network optimizations reduce energy

consumption in edge devices

Potential Impact:

Real-time failure prediction for industrial equipment

Scalable federated learning deployments across large

IoT networks

Cost reduction through optimized communication

protocols

As these research directions progress, they will further

strengthen the potential of federated learning in PdM,

driving innovation and enhancing industrial efficiency.

7.9 Conclusion

FML presents a transformative approach to PdM by

decentralizing model training while preserving data privacy.

Industries can leverage FML to implement scalable, secure,

and efficient maintenance solutions without exposing

sensitive data. By optimizing communication efficiency,

enhancing model robustness, and integrating emerging

technologies like blockchain and 6G, future research can

further refine FML applications, driving innovation across

various sectors. The continuous evolution of federated

learning will pave the way for more intelligent, self-

sustaining maintenance systems, ensuring reliability, cost-

effectiveness, and operational efficiency.

References

1.Kairouz, P., et al. (2021). Advances and open problems in

federated learning. Foundations and Trends® in Machine

Learning 14(1–2), 1–210.⏎

2.Li, T., et al. (2020). Federated learning: Challenges,

methods, and future directions. IEEE Signal Processing

Magazine, (3), 50–60.⏎

3.Smith, V., Chiang, C. K., Sanjabi, M., & Talwalkar, A. S.

(2017). Federated multi-task learning. Advances in Neural

Information Processing Systems, 30.⏎

4.Yang, Q., et al. (2019). Federated machine learning:

Concept and applications. ACM Transactions on Intelligent

Systems and Technology, 10(2), 1–19.

5.McMahan, B., et al. (2017). Communication-Efficient

Learning of Deep Networks from Decentralized Data.

AISTATS.⏎

6.Gupta, P., Anand, A., Agarwal, P., & McArdle, G. (2024).

Neural network inspired efficient scalable task scheduling

for cloud infrastructure. Internet of Things and Cyber-

Physical Systems, 4, 268–279.⏎

7.HS, M., & Gupta, P. (2024). Federated learning inspired

Antlion based orchestration for Edge computing

environment. PLoS One, 19(6), Art. e0304067.⏎

8.Mustapha, S. D. S., & Gupta, P. (2024). DBSCAN inspired

task scheduling algorithm for cloud infrastructure.

Internet of Things and Cyber-Physical Systems, 4, 32–

39.⏎

9.Gupta, P., Rawat, P. S., kumar Saini, D., Vidyarthi, A., &

Alharbi, M. (2023). Neural network inspired differential

evolution based task scheduling for cloud infrastructure.

Alexandria Engineering Journal, 73, 217–230.⏎

10.Madhusudhan, H. S., Gupta, P., Saini, D. K., & Tan, Z.

(2023). Dynamic virtual machine allocation in cloud

computing using elephant herd optimization scheme.

Journal of Circuits, Systems and Computers, 32(11),

2350188.

11.Rawat, P. S., Gaur, S., Barthwal, V., Gupta, P., Ghosh, D.,

Gupta, D., & Rodrigues, J. J. C. (2025). Efficient virtual

machine placement in cloud computing environment

using BSO-ANN based hybrid technique. Alexandria

Engineering Journal, 110, 145–152.⏎

Chapter 8

Artificial Intelligence and

Machine Learning-Based

Predictive Maintenance in

Fog and Edge Computing

Environment

Sahil Raj, Pradeep Kumar Rawat, and

Anirudh Negi

DOI: 10.1201/9781003610168-8

8.1 Introduction

Since software, hardware, and wireless communication

technologies have advanced rapidly in recent decades, the

number of Internet of Things (IoT) devices has skyrocketed,

enabling data analysis and measurement from physical to

cyber work [1]. The process of moving processing, data

storage, and application software to cloud data centers has

already been seen. An application can thus request access

to shared processing and storage resources. The cloud

http://doi.org/10.1201/9781003610168-8

computing approach offers a number of benefits, including

high scalability, availability, accessibility, and inexpensive

deployment costs [2]. IoT devices, which are widely utilized

in manufacturing, smart cities, smart homes, autonomous

driving, and the industrial Internet of Things, typically have

tiny memory and low processing power. Large volumes of

data are continuously generated by IoT devices, which must

be gathered and examined. Sending so much data to

servers in the cloud raises the cost of communication and

network capacity, delays system response, and

compromises data privacy [3]. Fog or edge computing has

recently been offered as a solution to this problem, where

data processing and computation take place in locations

that are close to the actual location from whence the data

originates [3, 4].

Industry 4.0 is defined by the convergence of edge–fog–

cloud computing, which is driving the next wave of digital

transformation, and artificial intelligence (AI), which includes

augmented intelligence, machine learning (ML), and deep

learning (DL) [5]. To fully realize the potential of intelligent

IoT, it is necessary to alleviate severe data fragmentation

through cross-company collaboration (such as multi-party

computation, pooled analysis, data sharing, and data

swapping among a network of collaborators/organizations)

[6, 7].

IoT, AI, and digital change are all powered by data.

However, when data is available and used by several

groups, it is healthy [8]. But at the moment, IoT data is

widely dispersed throughout silos that are owned or

controlled by several parties, each of whom can only see a

portion of the picture due to a variety of impediments.

Examples include disparate technologies and data

standards, sovereignty over data security, privacy, distrust,

data governance policies among businesses, intellectual

property rights, administrative roadblocks, legal and

compliance issues, and stifling technologically driven

breakthroughs and discovery [7, 8].

In fact, traditional ML/DL-based solutions (such as

anomaly detection and failure prediction) are usually not

directly applicable to decentralized applications in the IIoT

with dispersed edge devices. Two factors are at play here:

1. Privacy concerns: Integrating IIoT data across several

parties usually yields tremendous ML capabilities;

nevertheless, businesses/factories and the associated

edge devices are hesitant to share their safety-

sensitive acquired data with one another, leading to

data islands and silos.

2. Absence of high-quality data: obtaining high-quality,

labeled data is typically costly and challenging, which

significantly impairs the model’s capacity for

generalization and robustness [9].

In terms of accuracy and dependability, a few strategies

have been used recently to address these problems (such as

knowledge transfer methods, transfer learning approaches,

and synthetic data generation); however, they fall short of

solutions that aim to increase the size of the training

dataset. In order to generate their own predictions, ML

algorithms look for patterns in the data and acquire

knowledge from them. To put it briefly, ML models and

algorithms pick up knowledge through experience.

Engineers create computer programs and provide them with

instructions that allow them to transform incoming data into

the desired output [10].

In contrast, ML builds the software to learn gradually and

with little to no human interaction. Researchers from various

domains have found ML appealing due to its extraordinary

performance, great promise in regression and classification

problems, and ability to apply supervised as well as

unsupervised learning approaches [11]. Subsequent

research demonstrated the range of ML applications that

are evident in the sector, including:

Product recommendations and e-commerce

Speech, image, and pattern recognition

Analytics of user behavior and context-aware

smartphone apps

Healthcare services

Transportation and traffic forecasting

IoT and smart cities

Threat intelligence and cybersecurity

Sentiment analysis and natural language processing

Sustainable agriculture and industrial applications

The method of anticipating equipment breakdowns and

performing maintenance to stop them before they happen is

known as predictive maintenance (PdM). In the age of

Industry 4.0 and smart production, this approach is crucial.

PdM can maximize equipment longevity by lowering the

probability of unplanned failures and minimizing the amount

of needless repairs by utilizing sensor readings, parameters

for the process, and other operational features. By

maximizing equipment uptime and lowering maintenance

costs, this approach boosts productivity. Since assembly line

production is used in the majority of industrial operations, a

machine failure has a cascading effect [9, 10]. As a result,

avoiding assembly line failure sites is crucial. A significant

amount of pertinent data must be gathered and analyzed in

a fair length of time in order to produce accurate and ideal

forecasts [10].

Intelligent edge computing solutions for distributed

processing of data are helpful in addressing the related

issues. Analyzing data on devices at the edge or local

servers near the data generating source is known as edge

computing. This minimizes the volume of data transferred to

a centralized server and enables data processing at the

source. Real-time data analysis by edge devices greatly

lowers system load by sending just the information that is

required to the central server [11]. By enabling AI training

on dispersed IoT devices without requiring data sharing,

federated learning (FL) has become a popular distributed,

collaborative AI technique that can support a wide range of

intelligent IoT applications [12].

8.2 Pertinent Literature

8.2.1 Federated Learning

Federated learning refers to a method where a central

server and several local clients work together to learn the

global framework in a scenario where data is decentralized.

Local clients can be smartphones, IoT devices, and other

devices [13]. FL makes learning possible without worrying

about data leaks or privacy concerns. FL opens up new

research directions for aim [14].

FL is a cutting-edge training technique for creating

customized models without jeopardizing user privacy. With

the advent of AI chipsets, client devices’ computational

capabilities have grown more potent. Similarly, AI model

training shifts onto the central server to the terminal

devices [15]. By effectively training the model using

terminal instrument processing capabilities, FL is a

confidential protection technique that keeps private

information hidden from view during data transmission. The

majority of DL/ML models rely on massive data for learning,

which may raise security and privacy concerns. FL learns

locally, keeps the data on each person’s local client instead

of a centralized server, and then uses the parameters of the

modified model to update a model on the centralized server.

Preserving privacy while avoiding data conflicts is the aim. A

distributed ML configuration has several clients coordinating

with one or more centralized servers [16]. By solely

obtaining updates from local models, FL can lower costs

when network traffic and expenses rise during the training

phase. FL’s fundamental tenet is that local updates from the

central server alter the global model [17].

FL and distributed learning are closely related. Distributed

compute and storage comprise a traditional distributed

system. Distributed computation and the initial FL of models

update for an Android client are rather comparable [18]. The

most recent distributed ML research also pays significant

attention to private-preserving distributed systems, even

though FL placed a lot of emphasis on protecting one’s

privacy. FedAvg is the rudimentary FL framework. However,

it might be able to handle certain light non-independent and

identically distributed (non-IID) data. It continues to struggle

with structural heterogeneity and significant communication

overhead. Recent studies concentrate on algorithmic

optimization to increase accuracy and efficiency as well as

participant privacy to improve data protection.

Although FL differs greatly from common huge data

privacy protection techniques like privacy differential and k-

order inconspicuousness, its primary feature is its protection

of user privacy. By transmitting encoded administered

limits, FL mainly protects handler confidentiality by

preventing intruders from accessing basic data [19]. This

guarantees that FL won’t violate GDPR and other regulations

or jeopardize handler confidentiality at the data level.

Because users have complete control over local data, data

owners’ anonymity is emphasized. This is the essential

component of FL that guarantees confidentiality. There are

two different kinds of privacy protection mechanisms in an

FL environment. Commonly employed encryption

techniques include safe aggregation and homomorphic

encryption. Another popular approach is to include noise of

variance confidentially in the method limitations. Google’s

proposed federated learning combines safe convergence

and differential secrecy to protect privacy. To achieve

confidentiality fortification, other research solely uses

homomorphic encoding fortification settings [20].

In the FL paradigm, data from clients are processed

collaboratively to train a model 𝑚FL in such a manner that

any client 𝑐𝑖ci does not expose its data 𝑑𝑖di to others. In

addition, the accuracy of 𝑚FL, denoted as 𝐴(𝑚FL), should

be very close to the accuracy of a DL network 𝑚DL, denoted

as 𝐴(𝑚DL) [21]. Formally, let δ be a non-negative real

number; then, the FL algorithm has δ-accuracy loss if:

FL assists in the reduction of the following:

Potential of unauthorized data access, since data

transmission over the network is not done.

Cost and time of information transfer by reduction of

the data that is transmitted over the network.

Central computational cluster and central storage

requirements.

Network traffic.

Table 8.1 presents the basics of FL [22].

Table 8.1 Basics of FL⏎

Head Description

Aim Processing various data on heterogeneous data

sources

Datasets Heterogeneous data sets

Nodes Often low-power devices, such as smartphones

and IoT devices, with limited computing

resources connected by less reliable networks,

which results in their failures or dropping out of

computation

8.2.2 Predictive Maintenance

A new preventative maintenance technique called PdM

extends equipment life and ensures sustainable operational

management, which enhances industrial process

performance and efficiency. As a result, there is less

downtime, fewer needless line pauses, and cheaper repair

expenses [23]. Maintaining industrial equipment in the best

possible shape and with the most efficiency is crucial.

Techniques are required to guarantee the equipment’s

effectiveness by reducing machine downtime and averting

problems before they happen. Given that PdM relies on data

gathered from numerous sensors, it needs to handle a

number of concerns, including privacy, operations, and

development costs [24].

Four categories of maintenance can be distinguished.

When parts fail, the simplest step is to simply replace them.

The second option, which has the benefit of improving the

overall time efficiency of scheduled maintenance, is the

periodic replacement of each part according to the failure

history. The third strategy is proactive maintenance, which

entails getting rid of broken components to increase the

facility’s effectiveness. The last technique examines

equipment data to try to find and fix anomalies before they

cause failure [25].

Digitization and transformation of predictive processes

provide for a greater knowledge of the underlying

processes, as well as more accurate and justified

conclusions that rely less on intuition. Furthermore,

knowledge gained from linked data sources and advanced

analytics enables the implementation of new maintenance

methods, improved work and inventory planning, increased

production efficiency, and higher safety levels [26]. The

power business has seen significant modifications in recent

years, spurred by new energy sources, climate change, and

environmental concerns. This sector can thus benefit from

current ways to keeping equipment in good operating order,

avoiding environmental pollution, and preventing

breakdowns that could have major ecological effects.

Reference [27] discusses maintenance procedures and

tactics for preventing breakdowns and lowering the risk of

such issues in the power industry [27].

PdM is a very complex operation; for a real-time view of

the condition of health and reliability of industrial

machinery, data must be collected from the system’s

various sensors [27]. The maintenance strategy consists of

four phases:

1. Data collection from various system sensors

2. Data preprocessing

3. Fault detection and prognosis

4. Decision-making.

AI and ML algorithms can be used to collect and evaluate

data from the physical environment. Author describe

numerous strategies for PdM:

The physical model technique assesses component

degradation using a system’s physics or mathematical

model. The accuracy of this approach is based on the

model, which is validated using statistical approaches.

Knowledge-based strategy, which depends on prior

knowledge or experience in the system to lessen its

complexity. Expert systems and fuzzy logic fall under

this category.

Data-driven method, which uses computer capacity

and a big amount of data. This model is divided into

three types: statistical, stochastic, and ML models.

Digital twin approach, which combines data and

models and creates a link between the physical world

and the digital ones [28].

A basic method to defect prediction is to develop physics-

based models that include a physical description of the

machine deterioration process. Nowadays, even if data-

based methods are primarily used, the selection of physics-

based models may be more appropriate, especially in some

sectors [29]. This mathematical technique correlates the

phenomenon of wear with the usable life of components.

Among the variables examined in the creation of the

physical-mathematical model, several physical values

characterize the thermal, mechanical, chemical, and

electrical properties of the analyzed component.

Domain experts are also depended on to construct

knowledge-based models, which try to imitate the experts’

abilities and behavior. As a result, once knowledge has been

formalized, it may be reproduced and applied automatically.

Expert systems are programs that combine experts’

knowledge in a certain field and inference processes to

mimic thought while providing support and practical

solutions. Rule-based systems and fuzzy logic are two of the

most frequent techniques to implementing this type of

model. Rule-based systems have the advantage of being

simple to design and interpret, but they can perform badly,

particularly when complex situations or a large number of

rules are required.

Statistical and stochastic approaches allow us to cope

with complicated systems whose evolution over time is

difficult to anticipate [30]. As we will see in this part, the

application of statistical approaches for the prediction,

estimation, and optimization of the probability of survival

and the average life span of a system can be beneficial in

some specific circumstances connected to the operation of

mechanical components.

AI-based PdM has six major components: data

preprocessing, AI algorithms, decision-making modules,

communication and integration, user interface, and

reporting.

Sensors are the primary data collectors in a PdM system.

These specialized gadgets are strategically positioned on

equipment and machinery to continually monitor a variety

of characteristics, including temperature, pressure,

vibration, and others [31]. Sensor data provides real-time

insights into equipment health and serves as the foundation

for PdM analysis. Raw sensor data is frequently noisy and

inconsistent.

Data preparation is the first stage in preparing data for

analysis [32]. It entails data cleansing, normalization, and

missing data management. High-quality data is required for

accurate PdM modeling. AI methods, such as ML and DL

approaches, serve as the brain of the PdM system.

The algorithms examine the data to determine the most

critical characteristics associated with potential failures.

They use previous data to forecast equipment failures,

abnormalities, and Remaining Useful Life (RUL).

AI algorithms generate insights and forecasts, which are

processed by decision-making modules. These modules are

responsible for identifying when maintenance is required.

They can prescribe preventative and corrective

maintenance jobs, schedule maintenance, and provide

notifications to maintenance personnel as needed [22].

Communication and integration ensure that the system’s

findings are successfully converted into action. This

component entails interacting with a variety of

stakeholders, including maintenance workers and

management. Furthermore, connection with corporate

systems like Enterprise Resource Planning (ERP) and asset

management software helps to align PdM with overall

organizational goals [32].

To make these insights available to maintenance

personnel and decision-makers, user interfaces and

reporting tools are required. These tools make it easier for

users to grasp complicated data patterns and make

informed decisions by incorporating data visualization,

dashboard, and reporting capabilities. Data visualization

tools and dashboards help maintenance teams and decision-

makers understand data insights and forecasts. Visual aids

help you understand complex data patterns and make

informed decisions [22].

8.2.3 Federated Learning for Predictive

Maintenance

Equipment failure can have a negative impact on

productivity in production. As a result, it is critical to develop

a systematic PdM model for process equipment in order to

maintain production schedules and quality while also

reducing energy waste and accidents. For this aim, we

detect sensor data collected from the facility, compare it

with the current normal state, and develop a predictive

model for the facility’s future state. FL for PdM is the

integration of distributed ML with industrial applications to

enhance equipment reliability and efficiency [33]. FL allows

multiple devices or organizations to train ML models

collaboratively without sharing sensitive data, which makes

it ideal for PdM scenarios where data privacy and security

are critical. By leveraging the decentralized data available in

diverse sources, FL allows the creation of robust models that

can identify patterns and predict equipment failures across

various environments and operating conditions. This

approach reduces downtime, optimizes schedules for

maintenance, and minimizes costs while preserving

proprietary data confidentiality [34]. The synergy of FL and

PdM represents an industry-changing advancement in AI for

industries such as manufacturing, transportation, and

energy.

8.3 Related Work

Distributed machine learning methods are increasingly

being implemented using edge and fog computing,

particularly in contexts with limited resources. Four potential

strategies for allocating the workload among the edge, fog,

and cloud levels are covered by Ucar [35]. This article also

highlights developments and problems for implementation

in the areas of communication, security, privacy, machine

learning, and hardware [35]. Generally speaking, there are

two subsections in this area. The majority of relevant

research on FL and optimization strategies, distribution

methods, and hierarchical FL are included in ML at the edge,

fog, and cloud levels. The majority of associated works that

use FL in Predictive Maintenance (PM) application and

distributed ML for collaboration PM scenarios are included in

the second category, DML for collaborative PM.

8.3.1 Cloud, Edge, and Fog-Level Machine

Learning

To facilitate shared PM, centralized cloud computing is the

best option for data integration. However, manufacturing

companies will not be content with corporations sharing

production data because of data privacy and industrial

competition. An organization may occasionally be hesitant

to centralize the asset failure data gathered from many

production sites due to legal concerns. Additionally, it is

very expensive and unaffordable to centralize any raw data

in a cloud [27]. As a result, edge and fog computing present

a viable way for the manufacturing sectors to connect

disparate data islands in order to improve models while

safeguarding their business intelligence [32].

Because every algorithm has a unique communication

pattern, it is difficult to design a system that allows ML to be

distributed efficiently. DML is a developing system with a

variety of solutions that vary in terms of performance,

efficiency, algorithm, and architecture.

The topic of learning model parameters using data spread

over several edge nodes without transferring raw data to a

centralized place, such as cloud or fog, has been examined

by Wang et al. [36] To train the models, which included SVM

models, convolutional neural networks (CNNs), K-means,

and linear regression, they developed a method based on

distributed gradient descent. They demonstrated that non-

IID data is incorporated into the rate of convergence to the

suggested gradient-descent-based technique for distributed

learning [29].

Numerous reviews have been produced in this field as a

result of the FL research’s explosive growth, which provides

a thorough overview of FL and analyzes it from five

perspectives—systems heterogeneity, communication

architecture, ML model, privacy method, and data

partitioning— and discusses the main communication issues

with FL applications in edge devices and the IOT [28].

For FL in distributed optimization, there are a number of

algorithms available. The majority of these algorithms, such

as FedAvg, FedProx, CO-OP, and federated stochastic

variance reduced gradient, have been assessed and

contrasted. In order for the FedAvg algorithm to function,

the training task is executed on the edge devices, which

share an overall model—which is an average of all the

parameters—with the central server.

8.3.2 Collaborative DML PM

According to research, ML algorithms for PM application can

be implemented by utilizing fog computing, which has

greater computational capacity than edge devices.

FL makes it possible for PM to collaborate at the edge

level on cross-company data for various production

locations or even data that is dispersed throughout several

enterprises. The goal of this approach is to provide failure

pattern information on a single asset without disclosing the

raw information, which can be regarded as private business

information [37].

Some edge devices might not have the processing power

to train the global model in time, which is one of the

problems with employing FL in the PM application. These

clients have the potential to hinder other edge devices’

effective collaborative learning of the pattern of failure from

one another, delay model aggregation, and even

disconnection during a training iteration. The Split Pred

framework for collaborative PM, which offers a cross-device

FL to conduct dependable model training at edge devices,

was developed as a solution to this problem [38].

A real-time edge computing defect detection system was

suggested. Based on an Long Short-Term Memory (LSTM)

recurrent neural network running on the back end, they

employed a two-layer architecture with a real-time fault

detector using single-board computers. A system

architecture for edge-based PM applications for IoT-based

manufacturing was put forth by Yang et al. [39]. They

demonstrated how distributed learning in edge computing

offers certain benefits in terms of bandwidth optimization

and delay response for edge control. To illustrate the

operation of edge, fog, and cloud-based resources, a

mechanism for collaboration among edge, fog, and cloud

computing is examined [39].

An empirical investigation on predicting failures in the

production line based on FL was given by Ning Ge et al.

[40]. For the horizontal FL scenario, they have created a

federated SVM method; for the vertical FL scenario, they

have created a federated random forest algorithm.

Additionally, they have examined FL’s efficacy in contrast to

centralized learning. According to their findings, the

centralized algorithm for failure maintenance and prediction

can be replaced with the distributed FL algorithm [40].

Table 8.2 Federated ML concepts and applications

Federated ML

concepts and

applications

Stochastic method with variance

reduction for solving the problem on

federated learning [23]

Challenges of non-IID data to model

training on horizontal and vertical FL

[29]

Horizontal FL, vertical FL, and

federated transfer learning [31]

Analyzing FL regarding data

partitioning, privacy, model, and

communication [39]

Overview of FL, technologies,

protocols and applications [41]

8.4 Conclusion

A rapidly expanding field of study with many benefits and

challenges, particularly in predictive maintenance (PM)

applications, is distributed ML algorithms across edge

devices and their collaboration with fog and cloud [42]. It

has been demonstrated that using federated ML techniques

enhances communication effectiveness and system reaction

time for real-time applications, in addition to improving the

privacy and security of data from edge devices. During a

collaborative PM application, two distributed models,

Federated Support Vector Machine (FedSVM) and Federated

Long Short-Term Memory (FedLSTM), were developed in this

research to allow local edge devices within an FL algorithm

to jointly train a global model at the cloud level [43]. Two

distinct communication topologies were used to examine

the FedSVM model, and its accuracy and convergence time

were evaluated. When it came to forecasting while

maintenance should be performed, FedSVM was shown to

be incredibly quick during training and appropriate for

distributed web applications [36]. FedLSTM with the random

connection among the neurons has been developed and

investigated based on two distinct communication

topologies, with both asynchronous and synchronous

algorithms for precise RUL prediction on distributed

systems. The model accuracy and convergence time have

been evaluated using the Commercial Modular Aero-

Propulsion System Simulation (CMAPSS) dataset. FedSVM

and FedLSTM results are comparable to centralized

algorithms, and they also improve communication

effectiveness and system reaction time for real-time

applications, in addition to improving edge device privacy

and security, according to a comparison with state-of-the-art

research on centralized prediction of RUL with CMAPSS [44].

The FedSVM model has also been applied to the Modified

National Institute of Standards and Technology (MNIST)

dataset’s digit classification, demonstrating the generality

of the aggregation technique and its compatibility with

various learning algorithms [41].

Future research will focus on improving the model

aggregation process to handle heterogeneous hardware at

the edge level, non-IID data, and Simpson’s paradox, which

are common in PM applications because of the various

anomalies that occur at edge devices [41, 44].

References

1.Awotunde, J. B., Jimoh, R. G., Ogundokun, R. O., Misra, S.,

& Abikoye, O. C. (2022). Big data analytics of IoT-based

cloud system framework: Smart healthcare monitoring

systems. In Artificial intelligence for cloud and edge

computing (pp. 181–208). Cham: Springer International

Publishing.⏎

2.Zhang, C., Hu, X., Xie, Y., Gong, M., & Yu, B. (2020). A

privacy-preserving multi-task learning framework for face

detection, landmark localization, pose estimation, and

gender recognition. Frontiers in Neurorobotics, 13, 112.⏎

3.Xie, Y., Wang, H., Yu, B., & Zhang, C. (2020). Secure

collaborative few-shot learning. Knowledge-Based

Systems, 203, 106157.⏎

4.Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A.,

McMahan, H. B., Patel, S., ... & Seth, K. (2017, October).

Practical secure aggregation for privacy-preserving

machine learning. In Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications

Security (pp. 1175–1191).⏎

5.Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated

machine learning: Concept and applications. ACM

Transactions on Intelligent Systems and Technology

(TIST), 10(2), 1–19.⏎

6.Nguyen, D. C., Ding, M., Pham, Q. V., Pathirana, P. N., Le,

L. B., Seneviratne, A., ... & Poor, H. V. (2021). Federated

learning meets blockchain in edge computing:

Opportunities and challenges. IEEE Internet of Things

Journal, 8(16), 12806–12825.⏎

7.Lee, H., & Kim, J. (2021, August). Trends in blockchain and

federated learning for data sharing in distributed

platforms. In 2021 Twelfth International Conference on

Ubiquitous and Future Networks (ICUFN) (pp. 430–433).

IEEE.⏎

8.Li, L., Fan, Y., & Lin, K. Y. (2020, October). A survey on

federated learning. In 2020 IEEE 16th International

Conference on Control & Automation (ICCA) (pp. 791–

796). IEEE.⏎

9.Yu, S., Chen, X., Zhou, Z., Gong, X., & Wu, D. (2020).

When deep reinforcement learning meets federated

learning: Intelligent multitimescale resource management

for multiaccess edge computing in 5G ultradense

network. IEEE Internet of Things Journal, 8(4), 2238–

2251.⏎

10.Leroy, D., Coucke, A., Lavril, T., Gisselbrecht, T., &

Dureau, J. (2019, May). Federated learning for keyword

spotting. In ICASSP 2019–2019 IEEE International

Conference on Acoustics, Speech and Signal Processing

(ICASSP) (pp. 6341–6345). IEEE.⏎

11.Feng, J., Rong, C., Sun, F., Guo, D., & Li, Y. (2020). PMF: A

privacy-preserving human mobility prediction framework

via federated learning. Proceedings of the ACM on

Interactive, Mobile, Wearable and Ubiquitous

Technologies, 4(1), 1–21.⏎

12.Nguyen, D. C., Ding, M., Pathirana, P. N., Seneviratne, A.,

Li, J., & Poor, H. V. (2021). Federated learning for internet

of things: A comprehensive survey. IEEE Communications

Surveys & Tutorials, 23(3), 1622–1658.⏎

13.Ahn, J., Lee, Y., Kim, N., Park, C., & Jeong, J. (2023).

Federated learning for predictive maintenance and

anomaly detection using time series data distribution

shifts in manufacturing processes. Sensors, 23(17), 7331.

https://doi.org/10.3390/s23177331⏎

14.Fausing Olesen, J., & Shaker, H. R. (2020). Predictive

maintenance for pump systems and thermal power

plants: State-of-the-art review, trends and challenges.

Sensors, 20(8), 2425.⏎

15.Chong, K. E., Ng, K. C., & Goh, G. G. G. (2015,

December). Improving Overall Equipment Effectiveness

(OEE) through integration of Maintenance Failure Mode

and Effect Analysis (maintenance-FMEA) in a

semiconductor manufacturer: A case study. In 2015 IEEE

International Conference on Industrial Engineering and

Engineering Management (IEEM) (pp. 1427–1431). IEEE.⏎

16.Bousdekis, A., Lepenioti, K., Apostolou, D., & Mentzas, G.

(2019). Decision making in predictive maintenance:

Literature review and research agenda for industry 4.0.

IFAC-PapersOnLine, 52(13), 607–612.⏎

17.Compare, M., Baraldi, P., & Zio, E. (2019). Challenges to

IoT-enabled predictive maintenance for industry 4.0. IEEE

Internet of Things Journal, 7(5), 4585–4597.⏎

18.Servetnyk, M., Fung, C. C., & Han, Z. (2020, December).

Unsupervised federated learning for unbalanced data. In

GLOBECOM 2020-2020 IEEE Global Communications

Conference (pp. 1–6). IEEE.⏎

19.Haq, I. U., Anwar, S., & Khan, T. (2023, March). Machine

vision based predictive maintenance for machine health

monitoring: A comparative analysis. In 2023 International

Conference on Robotics and Automation in Industry

(ICRAI) (pp. 1–8). IEEE.⏎

https://doi.org/10.3390/s23177331

20.Calikus, E., Nowaczyk, S., Sant’Anna, A., & Dikmen, O.

(2020). No free lunch but a cheaper supper: A general

framework for streaming anomaly detection. Expert

Systems with Applications, 155, 113453.⏎

21.Marchiningrum, A. U. (2022, December). Digital twin for

predictive maintenance of palm oil processing machines.

In 2022 6th International Conference on Information

Technology, Information Systems and Electrical

Engineering (ICITISEE) (pp. 1–6). IEEE.⏎

22.Kholod, I., Yanaki, E., Fomichev, D., Shalugin, E.,

Novikova, E., Filippov, E., & Nordlund, M. (2021). Open-

source federated learning frameworks for IoT: A

comparative review and analysis. Sensors, 21(1), 167.

https://doi.org/10.3390/s21010167⏎

23.Konečný, J., McMahan, B., & Ramage, D. (2015).

Federated optimization: Distributed optimization beyond

the datacenter. arXiv preprint arXiv:1511.03575.⏎

24.Lim, W. Y. B., Luong, N. C., Hoang, D. T., Jiao, Y., Liang, Y.

C., Yang, Q., ... & Miao, C. (2020). Federated learning in

mobile edge networks: A comprehensive survey. IEEE

Communications Surveys & Tutorials, 22(3), 2031–2063.⏎

25.Saputra, Y. M., Hoang, D. T., Nguyen, D. N., Dutkiewicz,

E., Mueck, M. D., & Srikanteswara, S. (2019, December).

Energy demand prediction with federated learning for

electric vehicle networks. In 2019 IEEE Global

Communications Conference (GLOBECOM) (pp. 1–6).

IEEE.⏎

26.Silva, S., Gutman, B. A., Romero, E., Thompson, P. M.,

Altmann, A., & Lorenzi, M. (2019, April). Federated

learning in distributed medical databases: Meta-analysis

of large-scale subcortical brain data. In 2019 IEEE 16th

https://doi.org/10.3390/s21010167

International Symposium on Biomedical Imaging (ISBI

2019) (pp. 270–274). IEEE.⏎

27.Lu, Y., Huang, X., Dai, Y., Maharjan, S., & Zhang, Y.

(2019). Blockchain and federated learning for privacy-

preserved data sharing in industrial IoT. IEEE Transactions

on Industrial Informatics, 16(6), 4177–4186.⏎

28.Bonawitz, K. (2019). Towards federated learning at scale:

System design. arXiv preprint arXiv:1902.01046.⏎

29.Zhu, H., Xu, J., Liu, S., & Jin, Y. (2021). Federated learning

on non-IID data: A survey. Neurocomputing, 465, 371–

390.⏎

30.Zeng, T., Semiari, O., Mozaffari, M., Chen, M., Saad, W., &

Bennis, M. (2020, June). Federated learning in the sky:

Joint power allocation and scheduling with UAV swarms. In

ICC 2020–2020 IEEE International Conference on

Communications (ICC) (pp. 1–6). IEEE.⏎

31.Aledhari, M., Razzak, R., Parizi, R. M., & Saeed, F. (2020).

Federated learning: A survey on enabling technologies,

protocols, and applications. IEEE Access, 8, 140699–

140725.⏎

32.Molęda, M., Małysiak-Mrozek, B., Ding, W., Sunderam, V.,

& Mrozek, D. (2023). From corrective to predictive

maintenance—A review of maintenance approaches for

the power industry. Sensors, 23(13), 5970.

https://doi.org/10.3390/s23135970⏎

33.Tinga, T., & Loendersloot, R. (2019). Physical model-

based prognostics and health monitoring to enable

predictive maintenance. In Predictive Maintenance in

Dynamic Systems: Advanced Methods, Decision Support

Tools and Real-World Applications (pp. 313–353).

Springer, Singapore.⏎

https://doi.org/10.3390/s23135970

34.Arena, F., Collotta, M., Luca, L., Ruggieri, M., & Termine,

F. G. (2022). Predictive maintenance in the automotive

sector: A literature review. Mathematical and

Computational Applications, 27(1), 2.

https://doi.org/10.3390/mca27010002⏎

35.Ucar, A., Karakose, M., & Kırımça, N. (2024). Artificial

intelligence for predictive maintenance applications: Key

components, trustworthiness, and future trends. Applied

Sciences, 14(2), 898.

https://doi.org/10.3390/app14020898⏎

36.Xu, G., Liu, M., Wang, J., Ma, Y., Wang, J., Li, F., & Shen, W.

(2019, August). Data-driven fault diagnostics and

prognostics for predictive maintenance: A brief overview.

In 2019 IEEE 15th International Conference on

Automation Science and Engineering (CASE) (pp. 103–

108). IEEE.⏎

37.Bemani, A., & Björsell, N. (2022). Aggregation strategy

on federated machine learning algorithm for collaborative

predictive maintenance. Sensors, 22(16), 6252.

https://doi.org/10.3390/s22166252⏎

38.Moshawrab, M., Adda, M., Bouzouane, A., Ibrahim, H., &

Raad, A. (2023). Reviewing federated machine learning

and its use in diseases prediction. Sensors, 23(4), 2112.

https://doi.org/10.3390/s23042112⏎

39.Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated

machine learning: Concept and applications. ACM

Transactions on Intelligent Systems and Technology

(TIST), 10(2), 1–19.⏎

40.Ge, N., Li, G., Zhang, L., & Liu, Y. (2022). Failure

prediction in production line based on federated learning:

an empirical study. Journal of Intelligent Manufacturing,

33(8), 2277–2294.⏎

https://doi.org/10.3390/mca27010002
https://doi.org/10.3390/app14020898
https://doi.org/10.3390/s22166252
https://doi.org/10.3390/s23042112

41.Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., & Gao, Y. (2021).

A survey on federated learning. Knowledge-Based

Systems, 216, 106775.⏎

42.Arena, F., Collotta, M., Luca, L., Ruggieri, M., & Termine,

F. G. (2021). Predictive maintenance in the automotive

sector: A literature review. Mathematical and

Computational Applications, 27(1), 2.⏎

43.Achouch, M., Dimitrova, M., Ziane, K., Sattarpanah

Karganroudi, S., Dhouib, R., Ibrahim, H., & Adda, M.

(2022). On predictive maintenance in industry 4.0:

Overview, models, and challenges. Applied Sciences,

12(16), 8081.⏎

44.Metwally, M., Moustafa, H. M., & Hassaan, G. (2020).

Diagnosis of rotating machines faults using artificial

intelligence based on preprocessing for input data. In

Conference of Open Innovations Association, FRUCT (No.

26, pp. 572–582). FRUCT Oy.⏎

Chapter 9

Deep Reinforcement

Learning-Based Task

Scheduling in Edge

Computing

Shristi Sonam, Pratik Gupta, and Saanch

Sapra

DOI: 10.1201/9781003610168-9

9.1 Introduction

9.1.1 Introduction to Edge Computing and Task

Scheduling Challenges

Edge computing has transformed data processing by shifting

computational tasks closer to data sources, reducing latency,

minimizing bandwidth usage, and improving real-time

responsiveness. However, resource constraints such as limited

computational power, storage, and energy at edge nodes

introduce significant challenges in task scheduling and resource

management. Efficiently distributing tasks while considering

dynamic workloads, varying network conditions, and

http://doi.org/10.1201/9781003610168-9

heterogeneous resource availability is crucial to maintaining

system performance.

Traditional heuristic-based scheduling approaches, such as

round-robin, earliest deadline first, or min-min/max-min

algorithms, rely on predefined rules and assumptions about

workload patterns. These methods often struggle to adapt to

unpredictable changes in resource availability and workload

fluctuations, leading to suboptimal performance in real-world

edge computing scenarios.

9.1.2 Deep Reinforcement Learning (DRL) as a

Solution

DRL offers a promising alternative by leveraging continuous

learning and real-time decision-making capabilities. DRL

integrates deep learning with reinforcement learning (RL),

enabling an agent to learn optimal scheduling policies through

interaction with the environment. The agent refines its

scheduling strategy over time by maximizing a reward function,

which considers factors such as latency, energy consumption,

task completion time, and overall system throughput.

9.1.3 Key Components of DRL-Based Task

Scheduling

1. Agent – The decision-making model that learns from past

scheduling experiences.

2. Environment – The edge computing infrastructure,

including edge nodes, tasks, and network conditions.

3. State Space – System parameters such as available

computational resources, task queue length, energy

consumption, and network latency.

4. Action Space – Possible scheduling decisions, such as

allocating a task to a specific edge node or offloading it to

the cloud.

5. Reward Function – A feedback mechanism that guides

the agent toward optimal scheduling by rewarding low

latency, high efficiency, and energy conservation while

penalizing suboptimal choices.

9.1.3.1 DRL Algorithms for Task Scheduling

Several DRL algorithms have been explored for optimizing edge

task scheduling:

Deep Q-Networks (DQN) – Uses Q-learning combined

with deep neural networks (DNN) to estimate the best

scheduling action.

Policy Gradient Methods (e.g., Proximal Policy

Optimization [PPO] and Asynchronous Advantage

Actor–Critic [A3C]) – Optimize scheduling decisions by

directly adjusting policies rather than estimating value

functions.

Deep Deterministic Policy Gradient (DDPG) – Suitable

for continuous action spaces, useful for fine-grained

resource allocation in edge computing [1].

9.1.3.2 Advantages of DRL-Based Scheduling

Adaptive Decision-Making – DRL dynamically adjusts to

changing workloads and resource availability.

Self-Learning and Optimization – Unlike heuristics, DRL

continuously improves performance over time.

Reduced Latency and Energy Consumption –

Optimized scheduling decisions lead to more efficient

resource utilization.

Scalability – DRL can handle complex edge environments

with heterogeneous devices and networks.

9.1.3.3 Challenges and Future Directions

While DRL holds great potential for edge computing task

scheduling, challenges remain:

High Computational Overhead – Training deep learning

models on resource-constrained edge devices is difficult.

Exploration-Exploitation Trade-off – Finding a balance

between trying new scheduling strategies and refining

known optimal ones.

Model Generalization – Ensuring the DRL model can

adapt to different edge computing scenarios without

retraining.

Future research can explore federated learning (FL) to

distribute training across multiple edge nodes, hybrid scheduling

models combining DRL with heuristics for faster convergence,

and lightweight DRL frameworks for deployment on edge

devices.

9.1.3.4 Conclusion

DRL-based task scheduling presents a transformative approach

for managing computational workloads in edge computing

environments. By leveraging adaptive learning, DRL can

outperform traditional heuristic methods, leading to enhanced

efficiency, lower latency, and better resource utilization. As

advancements in AI and edge computing continue, DRL will play

an increasingly crucial role in optimizing real-time task

scheduling in distributed systems.

9.2 Challenges in Task Scheduling for Edge

Computing

Task scheduling in edge computing is a highly complex process

due to the unique characteristics of edge environments, such as

decentralized resource management, dynamic workloads, and

stringent real-time requirements. Unlike traditional cloud

computing, where resources are centralized and scalable, edge

computing requires efficient and adaptive task scheduling to

optimize performance while addressing several critical

challenges. [2–5]

9.2.1 Resource Constraints

9.2.1.1 Limited Computational Power

Edge computing devices vary widely in terms of computational

capacity, ranging from low-power IoT devices (e.g., sensors and

embedded systems) to powerful edge servers. Unlike cloud data

centers that have virtually unlimited processing power, edge

nodes have finite CPU (Central processing unit), GPU (Graphical

processing unit), and memory resources. Inefficient scheduling

can lead to computational overload, reducing overall system

performance and causing task execution delays.

Example: In an industrial IoT (IIoT) setup, smart cameras

processing real-time video streams for defect detection

may struggle to handle multiple high-resolution video feeds

due to limited processing power. A poor scheduling decision

could cause delays in detecting manufacturing defects.

9.2.1.2 Storage Limitations

Edge devices often have constrained storage capacities, making

it challenging to store large datasets locally. Unlike cloud

environments that provide vast storage resources, edge nodes

must manage their data carefully, ensuring that storage

limitations do not hinder processing efficiency.

Solution: Effective task scheduling should include data-

aware strategies, where tasks are assigned based on the

availability of storage and the ability to process or offload

data efficiently.

9.2.1.3 Power and Energy Constraints

Many edge nodes rely on battery-powered or low-energy

devices, making energy efficiency a key challenge. Continuous

high-power computation can drain batteries quickly, reducing

the lifespan of edge devices and affecting system reliability.

Example: In a remote environmental monitoring system,

sensors and drones collecting climate data must balance

task execution efficiency with power consumption to avoid

frequent battery replacements.

Solution: Energy-aware scheduling algorithms can

dynamically adjust task allocation based on the energy

levels of each node, ensuring that critical tasks are

executed while conserving power.

9.2.2 Dynamic Workloads

9.2.2.1 Unpredictable Task Arrivals

Edge computing environments experience fluctuating workloads

due to varying user demands and environmental conditions.

Task arrival rates can be highly unpredictable, requiring

scheduling mechanisms that can dynamically adjust to these

changes [6,7].

Example: A smart traffic management system analyzing

real-time traffic patterns will experience varying workloads

throughout the day. Traffic surges during rush hours can

overwhelm edge nodes if task scheduling is not adaptive.

9.2.2.2 Adaptive Load Balancing

Traditional load balancing techniques used in cloud computing

are not directly applicable to edge environments due to resource

constraints and network variability. Edge-based task scheduling

must dynamically balance workloads across available nodes to

prevent overloading while ensuring efficient processing.

Example: In a smart healthcare monitoring system, sensors

collecting patient data must distribute computational tasks

across multiple edge servers to ensure continuous real-time

monitoring without overloading any single node.

Solution: Reinforcement learning-based scheduling models

can continuously learn and adjust load distribution based

on real-time workload variations [8].

9.2.2.3 Task Prioritization and Deadline Constraints

Many edge computing applications require prioritizing tasks

based on urgency and importance. For example, critical tasks

(such as emergency alerts in healthcare systems) should be

processed immediately, while non-critical tasks (such as

background data synchronization) can be scheduled with lower

priority.

Example: In an autonomous vehicle network, vehicle-to-

vehicle communication tasks must be executed with

minimal delay to avoid collisions, whereas entertainment

system updates can be scheduled with lower priority.

Solution: Deadline-aware scheduling techniques that factor

in task priority, execution deadlines, and system load can

improve performance in time-sensitive applications.

9.2.3 Latency Sensitivity

9.2.3.1 Real-Time Processing Requirements

Edge computing supports applications that require near-

instantaneous data processing, such as autonomous driving,

augmented reality (AR), and real-time medical diagnostics. Any

scheduling delay can lead to system failures or degraded user

experience.

Example: In AR applications like smart glasses, any delay in

processing graphical overlays will result in motion lag,

reducing user experience and usability.

Solution: Proximity-aware scheduling algorithms that

allocate tasks to the nearest available edge node can

significantly reduce latency.

9.2.3.2 Network Latency Considerations

Network delays caused by congestion, unreliable wireless links,

or variable bandwidth availability can impact task execution

time. Unlike cloud computing, where high-speed fiber-optic

connections provide stable communication, edge devices often

rely on Wi-Fi, 5G, or low-power wide-area networks (LPWANs)

with fluctuating reliability.

Example: In a smart surveillance system, if network

congestion delays video analytics processing, the system

may fail to detect security threats in real time.

Solution: Latency-aware scheduling should dynamically

adjust task placement based on real-time network

conditions, ensuring that tasks are processed on nodes with

the lowest communication overhead.

9.2.4 Heterogeneous Infrastructure

9.2.4.1 Diverse Computational Capabilities

Edge computing involves a highly heterogeneous environment

where edge nodes have varying levels of computational power,

architectures, and capabilities. Scheduling tasks efficiently

requires an understanding of each node’s processing capabilities

and compatibility with different applications.

Example: A smart city infrastructure may include Raspberry

Pi-based edge nodes, powerful edge servers, and 5G base

stations with AI accelerators. Scheduling must allocate AI-

based tasks (such as image recognition) to nodes with GPU

support while assigning simple computation tasks to less

powerful nodes.

Solution: Hardware-aware task scheduling techniques can

optimize task placement based on the processing power of

available edge nodes.

9.2.4.2 Varied Network Connectivity

Edge devices operate in a range of connectivity environments,

from high-speed 5G networks in urban areas to low-power

LPWANs in remote industrial sites. These connectivity variations

add complexity to scheduling decisions.

Example: A remote weather station in a rural area may rely

on intermittent satellite communication, making it

infeasible to offload tasks frequently. Scheduling should

prioritize local task execution instead of cloud offloading.

Solution: Adaptive network-aware scheduling that considers

network conditions and bandwidth availability can enhance

system reliability.

9.2.4.3 Multi-Tier Architecture Complexity

Edge computing often involves a multi-tier architecture

comprising edge nodes, fog computing layers, and cloud

integration. Effective task scheduling must decide whether to:

1. Execute tasks locally on the edge (low-latency but

resource-constrained).

2. Offload tasks to fog nodes (moderate latency, better

resources).

3. Send tasks to the cloud (high latency, unlimited computing

power).

Example: In a smart factory, machine failure detection

should be processed at the edge (for real-time alerts),

whereas historical data analytics can be offloaded to

the cloud for long-term insights.

Solution: Hybrid scheduling algorithms can

intelligently decide task placement based on workload

type, latency requirements, and system constraints.

9.2.4.4 Conclusion

Task scheduling in edge computing is a multi-faceted challenge

that involves optimizing resource utilization, adapting to

fluctuating workloads, minimizing latency, and handling

heterogeneous infrastructures. Traditional scheduling

approaches struggle to meet the dynamic and decentralized

nature of edge environments.

To overcome these challenges, AI-driven approaches such as

DRL, federated learning (FL), and hybrid scheduling techniques

offer promising solutions. These advanced methods can

enhance task scheduling efficiency, improve real-time

responsiveness, and ensure optimal resource utilization in edge

computing environments. As edge computing continues to

evolve, research in intelligent and adaptive scheduling

mechanisms will be critical in unlocking its full potential.

9.3 Reinforcement Learning for Task Scheduling

Edge computing introduces significant challenges in task

scheduling due to resource constraints, dynamic workloads, and

latency-sensitive applications. Traditional heuristic-based

scheduling approaches fail to adapt efficiently to changing

conditions. DRL offers a promising solution by enabling an

intelligent scheduling mechanism that continuously learns and

improves its decisions through interaction with the environment

[9].

9.3.1 Basics of Reinforcement Learning

9.3.1.1 Definition and Core Concept

RL is a branch of machine learning where an agent learns to

make optimal decisions by interacting with an environment [10].

Instead of relying on predefined rules, the agent explores

different actions, observes their outcomes, and refines its

strategy based on a reward-based feedback system.

Key elements of RL include the following:

1. Agent – The decision-maker that interacts with the

environment.

2. Environment – The system with which the agent interacts

(e.g., edge computing infrastructure).

3. State (S) – The current condition of the environment, such

as resource availability and task queue length.

4. Action (A) – A set of possible decisions the agent can make,

such as assigning a task to an edge node.

5. Reward (R) – A feedback signal indicating the quality of an

action (e.g., a positive reward for reducing latency).

6. Policy (π) – A mapping from states to actions that defines

the agent’s decision-making strategy.

7. Exploration vs. Exploitation – The agent must balance

exploration (trying new actions to discover better

strategies) and exploitation (choosing known optimal

actions to maximize rewards).

9.3.1.2 How RL Works in Task Scheduling

In an edge computing scenario, an RL agent can be trained to

schedule tasks optimally by interacting with the environment.

Over time, it learns which scheduling decisions lead to better

outcomes, such as lower latency, reduced energy consumption,

and efficient resource utilization.

9.3.2 Deep Reinforcement Learning

9.3.2.1 Limitations of Traditional RL in Task Scheduling

While RL is effective for decision-making in structured

environments, traditional RL methods struggle with high-

dimensional state spaces in edge computing. The sheer number

of system parameters (e.g., CPU utilization, bandwidth, and task

priority) makes it difficult for conventional RL algorithms to

handle complex scheduling scenarios.

9.3.2.2 How DRL Overcomes These Limitations

DRL extends RL by incorporating DNNs, which allow the agent to

efficiently process large state spaces and identify complex

patterns in system dynamics. DRL enables the scheduler to

learn optimal task allocation policies dynamically without relying

on rigid, predefined rules.

9.3.2.3 Key DRL Algorithms Used for Task Scheduling

1. Deep Q-Network) – Uses a DNN to approximate the Q-value

function, helping the agent choose the best scheduling

actions.

2. Policy Gradient Methods (PPO, A3C) – Optimize the agent’s

policy directly, making them well-suited for continuous and

complex decision spaces.

3. Deep Deterministic Policy Gradient – Handles continuous

action spaces, making it ideal for fine-tuned resource

allocation in edge computing.

9.3.2.4 Advantages of DRL for Edge Task Scheduling

Handles Complex Environments – Learns optimal

scheduling policies even in dynamic and heterogeneous

edge networks.

Adaptability – Continuously improves its decision-making

based on real-time system feedback.

Scalability – Can be deployed across diverse edge nodes,

adjusting strategies to match varying resource capabilities.

9.3.3 DRL Framework for Edge Task Scheduling

A DRL-based task scheduling system consists of three key

components: state space, action space, and reward function.

These components define how the agent perceives the

environment, takes scheduling actions, and learns from

feedback.

9.3.3.1 State Space (S)

The state space represents the current status of the edge

computing environment. It includes a variety of system

parameters that influence scheduling decisions, such as:

1. CPU Utilization – Measures the processing load on each

edge node to avoid overloading.

2. Memory Availability – Tracks available RAM to ensure tasks

do not exceed storage limits.

3. Network Bandwidth – Represents data transmission

capacity, influencing task offloading decisions.

4. Task Queue Length – Indicates the number of pending tasks

at each node, preventing bottlenecks.

5. Energy Levels – Monitors battery status in power-

constrained edge devices to optimize scheduling.

6. Latency Requirements – Ensures time-sensitive tasks (e.g.,

AR applications) are processed within deadline constraints.

Example: In a smart healthcare monitoring system, if

a patient’s Electrocardiogram (ECG) data needs real-

time analysis, the state space should include network

latency and available computational resources to

prioritize immediate processing.

9.3.3.2 Action Space (A)

The action space defines the set of possible decisions that the

DRL agent can take to schedule tasks efficiently. These include:

1. Task Offloading – Deciding whether to process a task locally

at an edge node or offload it to the cloud.

2. Resource Allocation – Assigning computational power,

memory, and network bandwidth to specific tasks.

3. Task Prioritization – Ranking tasks based on urgency,

deadline, and importance.

4. Load Balancing – Distributing workloads across multiple

edge nodes to prevent bottlenecks.

5. Power-Aware Scheduling – Assigning tasks to energy-

efficient nodes to maximize battery life.

Example: In an IIoT system, a scheduling agent may

decide to offload complex AI-based defect detection

tasks to a high-performance edge node while handling

simple temperature monitoring tasks locally.

9.3.3.3 Reward Function (R)

The reward function provides feedback to the DRL agent,

guiding it toward optimal scheduling decisions. The function

should balance multiple objectives, including:

1. Latency Optimization – The agent is rewarded for

minimizing task execution delays.

2. Energy Efficiency – Lower power consumption leads to

higher rewards, preventing unnecessary energy wastage.

3. Fair Resource Utilization – Ensuring that all nodes

contribute to processing tasks rather than overloading a

single node.

4. Deadline Adherence – The agent receives penalties for

failing to complete tasks within specified deadlines.

5. Network Efficiency – Rewards are given for minimizing data

transfer costs and avoiding network congestion.

Example: If a task is completed within its deadline

while minimizing energy consumption, the agent

receives a high reward. If the task exceeds the

deadline or consumes excessive power, the agent is

penalized with a low reward.

9.3.3.4 Training Process for DRL-Based Scheduling

The DRL agent undergoes a continuous learning process:

1. Observe System State – The agent monitors the edge

computing environment.

2. Select an Action – Based on its policy, the agent makes a

scheduling decision (e.g., task offloading).

3. Execute and Receive Reward – The decision impacts system

performance, and the agent receives a reward.

4. Update Policy – The agent refines its strategy based on the

observed reward.

5. Repeat Process – Over time, the agent learns the optimal

scheduling strategy.

9.3.3.5 Real-World Example

Consider an autonomous vehicle network, where cars rely on

edge computing to process sensor data in real time. A DRL-

based scheduler could:

Prioritize collision detection tasks over infotainment

updates.

Allocate high-bandwidth network resources to urgent safety

alerts.

Offload non-critical computations (e.g., map updates) to

the cloud during low-traffic periods.

9.3.3.6 Conclusion

A DRL-based task scheduling system provides a dynamic and

adaptive approach to managing edge workloads. By defining an

efficient state space, action space, and reward function, the DRL

agent can optimize task allocation, minimize latency, and

enhance resource utilization. With continuous learning, it

outperforms traditional scheduling methods, making edge

computing systems smarter, faster, and more efficient.

9.4 DRL Algorithms for Task Scheduling

DRL employs various algorithms to optimize task scheduling in

edge computing environments. These algorithms can be

categorized into three main types: value-based (Deep Q-

Network), policy-based (Policy Gradient Methods), and hybrid

approaches (Actor-Critic Algorithms). Each method has its

unique strengths, which make them suitable for different

scheduling challenges.

9.4.1 Deep Q-Network

9.4.1.1 Overview

DQN is a value-based reinforcement learning algorithm that

extends the traditional Q-learning approach by incorporating

DNNs to handle large state spaces. It is well-suited for discrete

action spaces, where scheduling decisions involve selecting

from a fixed set of possible actions (e.g., selecting one of

several available edge nodes to process a task).

9.4.1.2 How DQN Works in Task Scheduling

DQN estimates the Q-value function, which represents the

expected cumulative reward for taking a specific action in a

given state. The algorithm updates the Q-values iteratively to

refine scheduling decisions:

1. State Representation – The scheduler observes system

parameters (e.g., CPU load, network bandwidth, and task

priority).

2. Action Selection – The agent chooses a scheduling action

(e.g., assigning a task to an edge node).

3. Reward Computation – The agent receives a reward

based on system performance (e.g., lower latency and

better resource utilization).

4. Q-Value Update – The neural network updates Q-values

using experience replay and target networks to stabilize

learning.

9.4.1.3 Key Features of DQN for Edge Computing

Handles large state spaces using DNN.

Learns optimal scheduling strategies dynamically

without predefined rules.

Uses experience replay to improve learning efficiency by

storing past experiences and training on them randomly.

9.4.1.4 Example: Smart Traffic Management System

A DQN-based scheduler can dynamically allocate computing

resources to process real-time traffic camera feeds in a smart

city.

If an intersection has high traffic congestion, the agent may

prioritize allocating GPU resources to process video

analytics quickly.

If a low-traffic area is detected, fewer computational

resources can be allocated to reduce energy consumption.

Over time, the scheduler learns which intersections require

more or fewer computing resources based on historical

traffic patterns.

9.4.1.5 Limitations of DQN

Inefficient for continuous action spaces (e.g., fine-

grained resource allocation).

High memory and computational overhead due to

experience replay.

Slow convergence in large-scale scheduling

environments.

9.4.2 Policy Gradient Methods

9.4.2.1 Overview

Unlike value-based methods like DQN, policy gradient (PG)

methods directly learn an optimal scheduling policy by

maximizing the expected reward. Instead of maintaining a Q-

value function, these methods optimize a policy function that

maps states to actions.

9.4.2.2 Popular Policy Gradient Algorithms

1. Proximal Policy Optimization

Uses a clipped objective function to prevent large

policy updates, improving training stability.

Suitable for edge scheduling scenarios requiring

continuous decision-making (e.g., fine-grained

bandwidth allocation).

2. Trust Region Policy Optimization (TRPO)

Enforces a trust region constraint to ensure gradual

and stable policy updates.

Well-suited for high-dimensional task scheduling

problems where abrupt changes in policy can degrade

performance.

9.4.2.3 How Policy Gradient Methods Work in Edge Scheduling

1. The agent observes the system state (e.g., CPU usage and

energy levels).

2. It selects an action (e.g., allocating CPU cores and

offloading a task).

3. The reward function evaluates the effectiveness of the

scheduling decision.

4. The policy is updated to maximize expected long-term

rewards.

9.4.2.4 Key Features of Policy Gradient Methods

More effective in continuous action spaces (e.g.,

adjusting CPU frequency dynamically).

Better exploration–exploitation balance by sampling

diverse scheduling strategies.

Stable training performance compared to DQN in large,

dynamic environments.

9.4.2.5 Example: Cloud-Assisted Edge Task Scheduling

A PPO-based scheduler could dynamically decide how much

processing power to allocate to different edge nodes based on

real-time workloads.

If an edge node has low computational load, the scheduler

can allocate fewer CPU cores to conserve energy.

If the system detects high-priority video analytics tasks, it

can allocate more GPU resources to speed up processing.

9.4.2.6 Limitations of Policy Gradient Methods

Slower convergence than value-based methods like DQN.

High variance in learning, requiring techniques like

baseline subtraction to stabilize training.

9.4.3 Actor–Critic (AC) Algorithms

9.4.3.1 Overview

AC algorithms combine value-based and policy-based

approaches to leverage the advantages of both. These methods

consist of two components:

1. Actor – Learns the optimal scheduling policy (decides

actions).

2. Critic – Evaluates the actions taken by the actor using a

value function.

This hybrid approach improves stability and efficiency in

dynamic scheduling environments.

9.4.3.2 Popular Actor–Critic Algorithms for Task Scheduling

1. Asynchronous Advantage Actor-Critic (A3C)

Runs multiple agents in parallel to speed up training.

Uses an advantage function to improve policy

updates.

2. Deep Deterministic Policy Gradient

Handles continuous action spaces (e.g., adjusting task

priority dynamically).

Well-suited for scheduling real-time tasks with fine-

grained control.

9.4.3.3 How Actor–Critic Works in Edge Scheduling

1. The Actor selects a scheduling action (e.g., sending a task

to an edge node).

2. The Critic evaluates the action by estimating its Q-value.

3. The Actor updates its policy based on the Critic’s feedback.

4. Over time, the scheduler improves efficiency by learning

better resource allocation strategies.

9.4.3.4 Key Features of Actor–Critic Methods

Efficient in high-dimensional state-action spaces.

More stable learning process compared to standalone

policy gradient methods.

Faster convergence than DQN in real-time environments.

9.4.3.5 Example: Edge-Based Video Streaming Optimization

In a video streaming service, A3C could:

Dynamically allocate network bandwidth based on

real-time congestion levels.

Prioritize HD streaming for high-demand users while

reducing resolution for lower-priority requests.

Optimize resource allocation across multiple edge

nodes to ensure smooth playback with minimal buffering.

9.4.3.6 Limitations of Actor–Critic Methods

Complex implementation due to multiple neural

networks.

Higher computational cost, making it resource-intensive

for lightweight edge nodes.

9.4.3.7 Comparison of DRL Algorithms for Task Scheduling

Table 9.1 DRL Algorithms⏎

Algorithm Type Strengths Weaknesses

Suitable Use

Cases

DQN Value-

based

Good for

discrete

action

spaces,

learns

optimal

scheduling

Not efficient for

continuous

tasks, slow

convergence in

large-scale

environments

Selecting

the best

edge node

for task

offloading

Algorithm Type Strengths Weaknesses

Suitable Use

Cases

policies

dynamically

PPO/TRPO

Policy-

based

Stable

training,

suitable for

continuous

action

spaces

High variance,

slower

convergence

than DQN

Dynamic

CPU/GPU

allocation,

fine-grained

task

prioritization

A3C/DDPG

Actor-

Critic

Efficient in

high-

dimensional

spaces,

balances

exploration

&

exploitation

Complex

implementation,

high

computational

cost

Adaptive

task

scheduling,

real-time

workload

balancing

9.4.3.8 Conclusion

Choosing the right DRL algorithm for edge task scheduling

depends on the specific challenges:

DQN is ideal for discrete scheduling decisions like selecting

an edge node.

Policy Gradient Methods (PPO and TRPO) are useful

for continuous resource allocation.

Actor–Critic methods (A3C and DDPG) offer a balanced

approach for complex, dynamic environments.

By leveraging these advanced DRL techniques, edge

computing systems can achieve better resource utilization,

lower latency, and enhanced energy efficiency, ultimately

improving the performance of real-time applications as shown in

Table 9.1.

9.5 System Architecture

The deployment of DRL for task scheduling in edge computing

involves multiple stages, including data collection, model

training, and deployment. These steps ensure that the scheduler

continuously learns and adapts to dynamic workloads, resource

availability, and system constraints.

9.5.1 Data Collection

9.5.1.1 Overview

For a DRL-based task scheduler to make optimal decisions, it

requires extensive data from edge nodes. This data helps the

model understand resource availability, workload patterns, and

system performance in real-world scenarios.

9.5.1.2 Types of Data Collected

1. Resource Availability – CPU utilization, memory usage,

network bandwidth, and battery levels of edge nodes.

2. Task Arrivals – Task frequency, computational complexity,

deadlines, and priority levels.

3. System Performance Metrics – Task execution time,

latency, energy consumption, and successful task

completion rates.

9.5.1.3 How Data Collection Works in Edge Environments

Real-Time Monitoring – Each edge node continuously

tracks and reports its resource usage and incoming tasks.

Historical Data Logging – Data from past scheduling

decisions is stored to train and fine-tune the DRL model.

Cloud-Assisted Data Aggregation – If edge nodes have

limited storage, collected data can be periodically sent to a

cloud server for further analysis and model training.

9.5.1.4 Example: Smart Healthcare System

In a remote patient monitoring system, wearable IoT devices

(e.g., smartwatches and ECG monitors) continuously collect and

transmit health data (heart rate, blood pressure, and oxygen

levels) to edge servers.

If a patient shows irregular vitals, an urgent task is

scheduled for real-time processing at the nearest edge

node.

If data collection is routine, processing can be scheduled

with lower priority, optimizing resource use.

9.5.2 DRL Model Training

9.5.2.1 Overview

Once sufficient data is collected, a centralized or distributed DRL

model is trained using both historical data and simulated

workloads. The goal is to develop an intelligent scheduler that

predicts the best scheduling decisions under varying conditions.

9.5.2.2 Training Process

1. State Definition – Represents system parameters (CPU

usage, task queue length, and network latency).

2. Action Definition – Includes scheduling decisions (task

offloading, CPU allocation, and priority adjustment).

3. Reward Function Design – Assigns rewards based on

metrics like latency reduction, energy efficiency, and task

completion rates.

4. Model Optimization – The DRL agent undergoes multiple

training cycles, learning from past scheduling decisions and

improving over time.

9.5.2.3 Centralized vs. Distributed Training

Table 9.2 Different Training Approaches⏎

TrainingApproach Description Advantages Challenges

Centralized

Training

DRL model is

trained in a

cloud or

high-

performance

computing

environment

More

computing

power,

better

global

optimization

Requires high-

bandwidth

connections for

data transfer

Distributed

Training

Edge nodes

train local

DRL models

and share

updates

periodically

Lower

latency,

real-time

learning at

the edge

Requires

synchronization

between nodes

9.5.2.4 Example: Video Surveillance System

In a smart city security network, thousands of surveillance

cameras generate large volumes of video data.

A centralized DRL model is trained using historical footage

to learn which tasks (e.g., motion detection and facial

recognition) require immediate processing and which can

be offloaded or delayed.

A distributed DRL model allows edge nodes to learn locally,

adapting to specific locations (e.g., high-crime areas vs.

quiet neighborhoods) without relying on a central cloud as

shown in Table 9.2.

9.5.3 Deployment

9.5.3.1 Overview

After training, the DRL model is deployed across edge nodes,

where it dynamically schedules tasks in real time. The model

continuously improves as it interacts with new data, adapting to

changing workloads, resource availability, and environmental

conditions.

9.5.3.2 Steps in Deployment

1. Model Distribution – The trained DRL model is either

deployed directly on edge nodes or in a hybrid setup

(partially on the cloud, partially on the edge).

2. Real-Time Decision-Making – The model schedules tasks

dynamically based on real-time system states.

3. Continuous Learning and Fine-Tuning – Edge nodes

periodically update the model using new data from ongoing

operations, ensuring improved performance over time.

9.5.3.3 Deployment Strategies

Table 9.3 Different Deployment Strategies⏎

Strategy Description Best Use Case

On-Device

Deployment

DRL model runs

locally on edge

nodes

Applications requiring

ultra-low latency, such

as autonomous

vehicles

Cloud–Edge

Hybrid

Deployment

Model runs partially

in the cloud and

partially on the

edge

Systems balancing

computational

efficiency and response

time, such as smart

grids

Federated

Learning

Deployment

Edge nodes train

their own models

and periodically

update a global

model

Privacy-sensitive

applications like

personalized healthcare

9.5.3.4 Example: Autonomous Vehicles

In self-driving cars, onboard edge devices process sensor data

from cameras, LiDAR, and radar to make real-time driving

decisions.

The DRL scheduler decides which computations should be

processed locally (e.g., obstacle detection and lane

changes) and which can be offloaded to nearby edge

servers (e.g., high-definition map updates).

An FL approach allows multiple vehicles to collaboratively

train a shared DRL model, improving overall road safety

without sharing sensitive user data as shown in Table 9.3.

9.5.3.5 Key Takeaways

1. Data Collection ensures that edge nodes gather essential

information on resource availability, task demands, and

system performance, providing a foundation for intelligent

scheduling.

2. DRL Model Training utilizes historical and simulated data

to create a model that can predict optimal scheduling

strategies without human intervention.

3. Deployment enables real-time adaptive scheduling at the

edge, reducing latency, optimizing resource usage, and

improving system efficiency.

By integrating continuous learning and dynamic adaptation,

DRL-based scheduling enables next-generation edge computing

solutions, ensuring faster response times, better resource

allocation, and energy-efficient task execution across various

industries.

9.6 Performance Evaluation

To assess the effectiveness of DRL-based task scheduling in

edge computing environments, various performance metrics are

used. Additionally, a comparative analysis with traditional

scheduling methods highlights the advantages and challenges

of DRL-based approaches.

9.6.1 Metrics for Evaluating DRL-Based Scheduling

Evaluating DRL-based scheduling involves multiple key

performance indicators (KPIs) to measure improvements in

latency, energy efficiency, and throughput compared to

traditional methods.

9.6.1.1 Latency Reduction

Definition: Measures the improvement in task response time

when using DRL-based scheduling compared to traditional

methods.

Formula: Latency Reduction=Traditional Latency−DRL-

Based Latency Traditional Latency×100%\text{Latency

Reduction} = \frac{\text{Traditional Latency} – \text{DRL-

Based Latency}}{\text{Traditional Latency}} \times 100\%

Why It Matters: Many edge computing applications (e.g.,

autonomous vehicles, augmented reality, and remote

healthcare) require ultra-low latency to function effectively.

Example:

In autonomous driving, a task like real-time obstacle

detection must be processed within milliseconds.

A traditional heuristic-based scheduler might take 500

ms, whereas a DRL-based scheduler can optimize task

offloading and reduce it to 200 ms, yielding a 60%

latency reduction.

9.6.1.2 Energy Efficiency

Definition: Assesses the power consumption savings achieved

through DRL-based task scheduling by optimizing resource

utilization and reducing unnecessary computations.

Formula: Energy Savings=Traditional Energy

Consumption−DRL Energy ConsumptionTraditional Energy

Why It Matters: Many edge nodes operate on limited

power sources (e.g., drones, IoT sensors, battery-powered

edge devices).

Example:

In a smart agriculture application, edge nodes analyze

soil moisture and weather conditions to schedule

irrigation tasks.

A conventional scheduler might allocate high processing

power to all tasks, draining battery life quickly.

A DRL-based scheduler learns to prioritize critical tasks

and offload non-urgent tasks to cloud servers, reducing

energy consumption by 30%.

9.6.1.3 Throughput

Definition: Evaluates the number of successfully executed

tasks per unit time, indicating system efficiency.

Formula: Throughput

Why It Matters: High throughput ensures that more tasks

are processed within a given time frame, which is crucial

for real-time applications like video surveillance and

industrial automation.

Example:

In an edge-based video surveillance system, multiple

cameras stream video feeds to edge nodes for real-time

motion detection.

A traditional round-robin scheduler may assign tasks

evenly but overload weaker nodes.

A DRL-based scheduler dynamically assigns tasks based

on node capabilities, improving throughput by 40%.

9.6.1.4 Task Completion Rate

Definition: Measures the percentage of tasks that are

successfully completed within a deadline.

Formula: Task Completion Rate=Tasks Completed on

TimeTotal Tasks Submitted×100%\text{Task Completion

Rate} = \frac{\text{Tasks Completed on Time}}

{\text{Total Tasks Submitted}} \times 100\%

Why It Matters: Many edge applications have strict time

constraints, such as predictive maintenance in

manufacturing or emergency response in healthcare.

Example:

In a hospital’s emergency response system, a traditional

scheduler might complete 70% of urgent processing

tasks on time, whereas a DRL-based scheduler could

increase this to 90% by dynamically reallocating

resources.

9.6.2 Comparative Analysis

To demonstrate the effectiveness of DRL-based scheduling, its

performance is compared against traditional heuristic and

machine learning-based scheduling methods.

9.6.2.1 Traditional Heuristic-Based Scheduling

Definition: Uses predefined rules (e.g., first come first

serve [FCFS], round-robin (RR), shortest job next [SJN]) to

schedule tasks.

Advantages:

Simple and easy to implement.

Works well in static environments with predictable

workloads as shown in Table 9.4.

Disadvantages:

Cannot adapt dynamically to changing workloads.

Leads to poor resource utilization in highly variable

environments.

9.6.2.1.1 Example Comparison (Heuristic vs. DRL)

Table 9.4 Comparision of Heuristic versus DRL⏎

SchedulingMethod

Latency

(ms)

Energy

Efficiency

Task

Completion

Rate Throughput

Round Robin

(RR)

500 Low 70% Medium

DRL-Based

Scheduling

200 High 90% High

🚀 DRL reduces latency and improves energy efficiency by dynamically allocating

resources based on real-time data.

9.6.2.2 Machine Learning-Based Scheduling

Definition: Uses supervised learning (e.g., decision trees

and support vector machines) to predict optimal scheduling

decisions.

Advantages:

Can learn from historical data to improve scheduling.

Performs better than heuristics in dynamic environments.

Disadvantages:

Requires labeled training data, which may be difficult to

obtain.

Lacks adaptability – once trained, the model does not

update in real time.

Example Comparison (ML vs. DRL-Based Scheduling)

Table 9.5 Different Scheduling Methods⏎

SchedulingMethod Adaptability

Computational

Efficiency

Learning

from Real-

Time Data

Supervised ML

(SVM, Decision

Trees)

Medium High No

DRL-Based

Scheduling

High Medium Yes

🔥 DRL continuously learns and adapts to real-time system changes, unlike traditional

ML models that rely on static training data.

9.6.2.3 Hybrid Approaches (Heuristic + ML vs. DRL)

Some systems combine heuristic methods with ML-based

predictions, but they still lack the full adaptability of DRL.

Example:

A rule-based heuristic (e.g., SJN) may work well for small

workloads.

A machine learning model may improve performance by

predicting task priority.

However, only DRL continuously improves and optimizes

scheduling in real time.

9.6.2.4 Final Takeaways

9.6.2.4.1 Why DRL-Based Scheduling Is Superior

Adaptive: Learns from real-time workloads and adjusts

scheduling decisions dynamically.

Energy Efficient: Optimizes power consumption by

reducing unnecessary computations.

High Performance: Achieves lower latency, higher

throughput, and better task completion rates.

Scalable: Works well in heterogeneous edge environments

with multiple resource constraints.

9.6.2.4.2 When to Use Traditional Approaches Instead

For static environments with predictable workloads,

heuristics may be simpler and more efficient.

If labeled data is available but real-time adaptation

is not required, traditional ML methods can be effective.

By leveraging DRL for edge task scheduling, systems can

achieve significant improvements in efficiency, scalability, and

real-time adaptability, making it a powerful choice for next-

generation edge computing applications as shown in Table 9.5.

9.7 Case Studies

DRL-based task scheduling has transformative applications

across various industries. It enhances efficiency, adaptability,

and real-time decision-making by dynamically allocating

resources and optimizing computational workloads. Below, we

explore three major domains where DRL-driven task scheduling

significantly improves performance:

9.7.1 Smart Healthcare

9.7.1.1 Overview

Smart healthcare systems rely on real-time patient monitoring,

medical imaging analysis, and emergency response

mechanisms. DRL-based scheduling ensures that critical medical

tasks are processed with minimal latency, improving patient

care and system efficiency.

9.7.1.2 How DRL Enhances Healthcare Scheduling

1. Real-Time Patient Monitoring:

Wearable IoT devices (e.g., smartwatches, ECG

monitors, and glucose sensors) continuously collect

vital signs.

DRL dynamically schedules urgent cases (abnormal

vitals) for immediate processing while delaying non-

urgent data to conserve resources.

2. Medical Imaging Analysis:

AI-driven image processing (e.g., Magnetic Resonance

Imaging [MRI] and Computed Tomography [CT] scans)

requires substantial computational power.

DRL optimizes scheduling by prioritizing critical cases

(e.g., tumor detection) over routine scans, ensuring

fast diagnoses.

3. Remote Surgery and Telemedicine:

Low-latency task execution is crucial for robotic-

assisted surgeries.

DRL helps in dynamically allocating computing

resources to ensure real-time video transmission and

robotic control.

9.7.1.3 Example: Remote Patient Monitoring

A smart Intensive Care Unit (ICU) system monitors patients’ vital

signs in real time. When a patient’s heart rate drops suddenly,

DRL schedules an immediate alert and analysis at the edge,

instead of sending data to the cloud, reducing response time

from 5 seconds to 1 second – a crucial improvement in

emergency cases.

9.7.1.4 Benefits of DRL in Healthcare:

Reduces latency in processing emergency data.

Enhances energy efficiency of battery-powered medical

devices.

Improves task prioritization for life-critical cases.

9.7.2 Autonomous Vehicles

9.7.2.1 Overview

Autonomous driving systems must process a massive amount of

sensor data (LiDAR, cameras, radar, and GPS) in real time to

make split-second decisions. DRL-based scheduling helps

allocate computational resources efficiently, ensuring safe and

responsive navigation.

9.7.2.2 How DRL Enhances Scheduling in Autonomous Vehicles

1. Sensor Data Processing:

A self-driving car collects data from multiple sensors

simultaneously.

DRL-based scheduling prioritizes critical tasks (e.g.,

pedestrian detection and collision avoidance) over less

urgent ones (e.g., traffic sign recognition).

2. Decision-Making in Navigation:

DRL optimizes the scheduling of path planning, lane

changes, and obstacle avoidance to ensure safe

driving.

It dynamically shifts computing resources based on

traffic congestion, weather conditions, and road

hazards.

3. V2X Communication (Vehicle-to-Everything):

Autonomous vehicles communicate with traffic

signals, other cars, and edge servers to improve road

safety.

DRL schedules and optimizes real-time data sharing

while minimizing bandwidth usage.

Example: Real-Time Collision Avoidance

A self-driving car detects an obstacle 100 meters ahead.

Traditional scheduling might delay processing due to ongoing

computations. However, a DRL-based scheduler instantly

prioritizes obstacle detection, ensuring a reaction time of less

than 50 milliseconds, preventing an accident.

9.7.2.3 Benefits of DRL in Autonomous Vehicles

Reduces decision-making latency, improving navigation

safety.

Enhances resource utilization in on-board computing units.

Balances workloads between on-board processors and

edge/cloud servers.

9.7.3 Industrial IoT and Smart Manufacturing

9.7.3.1 Overview

Factories and industrial plants generate massive data streams

from sensors, robots, and production lines. Efficient task

scheduling is vital for predictive maintenance, workload

balancing, and real-time process optimization. DRL-based

scheduling enhances efficiency and reduces downtime.

9.7.3.2 How DRL Enhances Industrial IoT Scheduling

1. Predictive Maintenance:

Sensors track machine conditions (e.g., vibration,

temperature, and pressure).

DRL schedules maintenance tasks before failures

occur, reducing unexpected breakdowns.

2. Workload Balancing in Manufacturing:

Industrial robots and machines have varying

computational loads.

DRL dynamically assigns workloads based on machine

availability and power consumption, optimizing energy

efficiency.

3. Supply Chain and Logistics Optimization:

DRL-based scheduling optimizes warehouse inventory

tracking and shipment processing.

AI-powered robotic sorting systems allocate picking

and packing tasks based on order priority and

resource availability.

9.7.3.3 Example: Smart Factory Predictive Maintenance

A smart factory uses IoT sensors to monitor a conveyor belt

motor. DRL detects early signs of overheating and schedules a

maintenance check before failure occurs, preventing unplanned

downtime that could cost the factory $50,000 per hour.

9.7.3.4 Benefits of DRL in Industrial IoT

Reduces maintenance costs by preventing unexpected

failures.

Optimizes resource allocation, improving energy efficiency.

Enhances manufacturing throughput by balancing

workloads across machines as shown in Table 9.6.

9.7.3.5 Final Takeaways

Table 9.6 Applications of DRL⏎

Application

Key

Challenges How DRL Helps Example

Application

Key

Challenges How DRL Helps Example

Smart

Healthcare

High latency

in emergency

response

Prioritizes

urgent medical

tasks

Remote ICU

patient

monitoring

Autonomous

Vehicles

Real-time

sensor

processing

delays

Optimizes task

prioritization

Collision

avoidance

system

Industrial IoT

Downtime due

to unplanned

failures

Enables

predictive

maintenance

Smart factory

scheduling

DRL-based task scheduling is revolutionizing edge computing by reducing latency,

improving efficiency, and optimizing resource allocation across diverse industries. 🚀

9.8 Future Directions

As edge computing evolves, DRL-based scheduling will integrate

with emerging technologies to improve efficiency, security, and

scalability. Below are three key future directions that can

revolutionize DRL-driven task scheduling in edge environments.

9.8.1 Federated Learning for DRL-Based Task

Scheduling

9.8.1.1 Overview

FL is a decentralized machine learning approach where multiple

edge devices collaboratively train a shared model without

sharing raw data. By integrating FL with DRL, edge nodes can

train scheduling models locally while preserving privacy and

scalability.

9.8.1.2 How FL Enhances DRL-Based Scheduling

1. Privacy-Preserving Model Training:

Sensitive data (e.g., health records, industrial logs,

vehicle navigation data) remains on the local edge

node, reducing privacy concerns.

FL enables DRL models to learn scheduling patterns

across multiple devices without exposing raw data to a

central cloud server.

2. Improved Scalability and Adaptability:

Instead of a single, centralized DRL model, multiple

edge devices train local models and share only model

updates.

This reduces communication overhead and allows the

scheduling model to adapt to regional workload

variations.

3. Enhanced Security and Compliance:

Many industries (e.g., healthcare, finance, and

defense) have strict data privacy regulations (e.g.,

HIPAA and GDPR).

FL ensures compliance by keeping user data

decentralized while still optimizing task scheduling.

9.8.1.2.1 Example: FL-Driven DRL in Smart Healthcare

A federated DRL scheduling model deployed across multiple

hospitals can learn from local patient monitoring workloads

without sharing private patient data. Each hospital trains its own

DRL model and only shares updates, leading to a more efficient

and privacy-preserving task scheduling system.

9.8.1.3 Benefits of Federated Learning in DRL-Based

Scheduling:

Privacy-Preserving: No need to send raw data to a

central cloud.

Scalable: Supports large networks of edge devices without

overloading a single model.

Efficient: Reduces network congestion by transmitting only

model updates instead of full datasets.

9.8.2 Multi-Agent Reinforcement Learning (MARL)

for Task Scheduling

9.8.2.1 Overview

Traditional DRL approaches involve a single agent making

scheduling decisions. However, in large-scale edge computing

environments, multiple distributed edge nodes must coordinate

task scheduling dynamically. MARL introduces multiple

cooperative or competitive DRL agents, enabling distributed

decision-making.

9.8.2.2 How MARL Enhances Edge Task Scheduling

1. Collaborative Scheduling across Edge Nodes:

Each edge node acts as an independent RL agent,

making localized scheduling decisions.

Agents share insights and collaborate to optimize

overall system performance.

2. Load Balancing and Fault Tolerance:

MARL enables intelligent task offloading across

multiple nodes.

If one edge node becomes overloaded, another agent

takes over dynamically.

3. Reduced Computational Bottlenecks:

Instead of relying on a single global scheduler, MARL

distributes scheduling responsibilities across multiple

nodes.

This improves responsiveness and eliminates central

bottlenecks.

9.8.2.3 Example: MARL in Autonomous Vehicle Fleets

In a smart traffic management system, each autonomous

vehicle acts as an RL agent, dynamically scheduling computing

tasks (e.g., collision detection, navigation planning, and real-

time communication). Vehicles cooperate to share processing

loads, reducing traffic congestion and avoiding collisions.

9.8.2.4 Benefits of Multi-Agent Reinforcement Learning:

Decentralized Scheduling: Edge nodes make local

decisions, reducing central server dependencies.

Scalable and Robust: Improves fault tolerance – if one

node fails, others adapt dynamically.

Optimized Resource Utilization: Balances workloads

across multiple edge nodes for efficient processing.

9.8.3 Integration with 6G Networks for Enhanced

Scheduling

9.8.3.1 Overview

With the advent of 6G networks (expected around 2030), DRL-

based task scheduling will see massive improvements due to

ultra-low latency, higher bandwidth, and AI-native

communication systems.

9.8.3.2 How 6G Enhances DRL-Based Scheduling

1. Ultra-Low Latency (Sub-Millisecond Response Time):

6G networks will achieve latency below 1 ms, enabling

near-instantaneous task scheduling decisions.

This is crucial for applications like real-time robotic

surgery, drone swarms, and holographic

communications.

2. AI-Native Networks and Edge Intelligence:

Unlike previous generations (4G and 5G), 6G will have

built-in AI/ML support, allowing DRL models to run

directly on network infrastructure.

DRL-based schedulers will continuously learn and

adapt based on real-time network conditions.

3. Seamless Task Migration and Edge-Cloud

Integration:

6G will enable ultra-fast task migration between edge

nodes and cloud data centers.

DRL will dynamically offload computationally heavy

tasks to the cloud when edge resources are limited.

9.8.3.3 Example: 6G-Enhanced DRL Scheduling for Smart Cities

A 6G-powered smart city deploys edge-based surveillance

cameras, traffic sensors, and AI-driven emergency response

systems. DRL-based scheduling dynamically assigns processing

tasks between local edge nodes and cloud AI models, ensuring

real-time decision-making for public safety and urban

management.

9.8.3.4 Benefits of 6G-Integrated DRL Scheduling:

Near-Instant Task Execution: Enables real-time AI

processing for critical applications.

Improved Network Adaptability: DRL agents

dynamically adjust scheduling policies based on network

congestion and availability.

Seamless Cloud–Edge Cooperation: Enables smooth

task migration between edge nodes and remote cloud

servers.

9.8.3.5 Final Takeaways and Future Outlook

Table 9.7 Summary of DRL⏎

Future

Technology

Key Impact on DRL-

Based Scheduling Example Use Case

Federated

Learning

Enhances privacy and

scalability

Secure healthcare data

processing without

exposing patient

records.

Multi-Agent

RL

Enables cooperative

scheduling across

multiple edge nodes

Autonomous vehicle

fleets optimizing real-

time navigation.

6G

Networks

Provides ultra-low

latency and AI-native

networks

Smart city infrastructure

with real-time AI-driven

decision-making.

By integrating federated learning, multi-agent RL, and 6G networks, DRL-based

scheduling will unlock new levels of efficiency, scalability, and intelligence in edge

computing environments!

9.9 Conclusion

DRL has emerged as a transformative solution for task

scheduling in edge computing, addressing the inherent

challenges of resource constraints, dynamic workloads, latency

sensitivity, and infrastructure heterogeneity. Traditional

scheduling approaches, such as heuristic-based and static rule-

based methods, often fail to adapt to rapidly changing

environments, leading to suboptimal resource utilization and

increased latency. DRL, by leveraging continuous learning and

adaptive decision-making, provides a robust framework for

optimizing resource allocation, reducing computational

overhead, and improving the overall efficiency of edge

computing systems as shown in Table 9.7.

One of the most significant advantages of DRL-based

scheduling is its ability to dynamically learn from real-time

system states and make intelligent scheduling decisions without

requiring predefined rules. By integrating DNN with

reinforcement learning principles, DRL efficiently processes

high-dimensional system parameters, such as CPU utilization,

network bandwidth, and energy consumption, to determine the

most effective scheduling actions. Unlike traditional machine

learning models, which require extensive labeled data and static

training, DRL continuously improves its scheduling policy

through interaction with the environment, ensuring that it

remains effective even under changing conditions.

The implementation of DRL in edge task scheduling follows a

structured framework, involving data collection, model training,

and real-time deployment. Edge nodes continuously gather

critical system information, including resource availability and

task arrivals, which is then used to train a centralized or

distributed DRL model. The trained model is subsequently

deployed across edge devices, where it autonomously manages

scheduling decisions to optimize workload distribution, minimize

latency, and enhance energy efficiency. Through this approach,

DRL enables low-latency task execution, ensuring that

applications with stringent timing constraints – such as

autonomous vehicles, augmented reality, and healthcare

monitoring – can operate seamlessly in real-world scenarios.

Several DRL-based algorithms have been explored for edge

computing, each offering unique advantages. DQNs effectively

handle discrete scheduling actions, making them well-suited for

task offloading decisions in IoT environments. Policy gradient

methods (PPO and TRPO) optimize scheduling policies by

directly maximizing expected rewards, enabling better

adaptability to fluctuating workloads. Actor–critic algorithms

(A3C and Soft Actor-Critic [SAC]) strike a balance between value-

based and policy-based learning, improving both exploration

and exploitation in scheduling decisions. These advanced

techniques allow DRL to outperform conventional scheduling

approaches in terms of throughput, response time, and power

efficiency.

The real-world impact of DRL-based scheduling [11] is evident

across multiple domains. In smart healthcare, DRL prioritizes

urgent patient monitoring tasks, reducing response times and

improving emergency handling. In autonomous driving, real-

time scheduling ensures rapid decision-making, enhancing

vehicle navigation and safety. In IIoT, predictive maintenance

powered by DRL minimizes downtime and optimizes resource

utilization. These applications highlight the versatility and

practical significance of DRL in edge computing environments.

Looking ahead, FL, MARL, and 6G network integration will

further enhance the capabilities of DRL-driven task scheduling.

FL enables decentralized training of DRL models while

preserving data privacy, making it particularly valuable for

healthcare and finance applications. MARL facilitates

cooperative task scheduling across multiple edge nodes,

improving overall system efficiency. Meanwhile, 6G’s ultra-low

latency and AI-native architecture will provide an ideal

infrastructure for real-time DRL-based scheduling.

In conclusion, DRL is a game changer for task scheduling in

edge computing, offering unprecedented adaptability, efficiency,

and intelligence. As edge computing continues to evolve, DRL-

driven scheduling will play a pivotal role in shaping the future of

intelligent, real-time, and energy-efficient computing

infrastructures, making it a fundamental technology for next-

generation applications.

References

1.Lin, K., Li, Y., Zhang, Q., & Fortino, G. (2021). AI-driven

collaborative resource allocation for task execution in 6G-

enabled massive IoT. IEEE Internet of Things Journal, 8(7),

5264–5273.⏎

2.Mustapha, S. D. S., & Gupta, P. (2024). DBSCAN inspired task

scheduling algorithm for cloud infrastructure. Internet of

Things and Cyber-Physical Systems, 4, 32–39.⏎

3.Gupta, P., Rawat, P. S., Kumar Saini, D., Vidyarthi, A., &

Alharbi, M. (2023). Neural network inspired differential

evolution based task scheduling for cloud infrastructure.

Alexandria Engineering Journal, 73, 217–230.

4.Madhusudhan, H. S., Gupta, P., Saini, D. K., & Tan, Z. (2023).

Dynamic virtual machine allocation in cloud computing using

elephant herd optimization scheme. Journal of Circuits,

Systems and Computers, 32(11), 2350188.

5.Rawat, P. S., Gaur, S., Barthwal, V., Gupta, P., Ghosh, D.,

Gupta, D., & Rodrigues, J. J. C. (2025). Efficient virtual

machine placement in cloud computing environment using

BSO-ANN based hybrid technique. Alexandria Engineering

Journal, 110, 145–152.⏎

6.HS, M., & Gupta, P. (2024). Federated learning inspired Antlion

based orchestration for Edge computing environment. PLoS

One, 19(6), Art. e0304067.⏎

7.Gupta, P., Anand, A., Agarwal, P., & McArdle, G. (2024). Neural

network inspired efficient scalable task scheduling for cloud

infrastructure. Internet of Things and Cyber-Physical Systems,

4, 268–279.⏎

8.Li, Y., et al. (2020). Reinforcement learning for resource

management in edge computing. IEEE Transactions on Mobile

Computing. 1–22.⏎

9.Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning:

An Introduction, The MIT Press, Cambridge, Massachusetts,

1998, 322 pp., ISBN 0-262-19398-1.⏎

10.Mnih, V., et al. (2015). Human-level control through deep

reinforcement learning. Nature. 518(7540), 529–533.⏎

11.Silver, D., et al. (2016). Mastering the game of Go with deep

neural networks and tree search. Nature. 529(7587), 484–

489.⏎

Chapter 10

Secure, Adaptable, and

Collaborative AI: Federated

Machine Learning Enhanced with

Meta-Learning and Differential

Privacy

Deepti Bhat, Ansh Chauhan, Chiranth Nagaprasanna,

Chirashwi S., and Swathi B. H.

DOI: 10.1201/9781003610168-10

10.1 Introduction

The abundance of data and variety of today’s devices provides enormous

potential for advancements in machine learning (ML) and artificial intelligence

(AI). However, the issues of traditional ML technology in edge network

applications surrounding data silos, privacy leakage and data security risks,

regulatory requirements, and engineering obstacles are those that need to be

navigated [1]. Federated learning (FL) is an increasingly popular solution that

aims to train a global model using data from one or more data owners/sources

[2]. This approach centers around the shift from centralized data, compute, and

governance to distributed and decentralized architecture with clients and

servers. This empowers individual clients to utilize their local data to

collaboratively train ML models without the risk of sharing the raw data to a

central entity [3]. In FL, each client trains a local model using its own data.

These local models are later aggregated by the central FL server to create a

global model, which is then redistributed to clients for further refinement. This

iterative process continues until satisfactory results are achieved. Despite FL’s

promise, several critical concerns remain, particularly in relation to adversarial

attacks, privacy leakage, and data heterogeneity.

http://doi.org/10.1201/9781003610168-10

This chapter embarks with the current issues of FL in Section 10.2, followed

by examining the need to strengthen it further in Section 10.3. Section 10.4

covers the general role of differential privacy (DP), whereas the impact of

various algorithms along the FL architecture is discussed in Section 10.5.

Additionally, meta-learning and its forms and convolution neural networks in the

context of FL have been discussed in Sections 10.6, 10.7, and 10.8,

respectively. At the end, Section 10.9 covers the conclusion, followed by the

references section.

10.2 Issues of Federated Learning

While the FL approach seems like a promising one, there are several concerns

with significant presence. Song et al. (2020) showed that the original training

data can be reconstructed from the model parameters uploaded by the FL client

participants through certain adversarial attacks, which can lead to privacy

leakage [4]. When it comes to adversaries, there are primarily two

classifications: active and passive. Active adversaries are those that

intentionally manipulate training data or trained models to achieve malicious

goals. This can involve altering models to prevent global model convergence, or

subtly misclassifying a specific set of samples to minimally impact the overall

performance of the global model. On the other hand, passive adversaries do not

modify data or models, but can still pose a threat to data privacy. For example,

they may deduce sensitive information such as local training data from revealed

models through gradients, or model updates [3].

The adversarial attacks can take several forms such as model poisoning, data

poisoning, and data reconstruction attacks, where the former two are active in

nature and the latter is passive. Model poisoning can occur through Byzantine

attacks where shared model parameters are tampered to affect the global

model. It could involve zero mode attack where weights are set to zero, random

mode attack where weights are altered with random values, or can be of

flipping mode where the global model updates in the opposite direction.

Furthermore, data poisoning attacks may involve label flipping that misclassifies

some of the sample data. On the other hand, data reconstruction attacks mainly

occur through trained models that are either local or global. One example is

Deep Leakage from Gradients (DLG) attack which infers local training data from

the publicly shared gradients [3]. The recent dynamic backdoor attacks,

however, presents a unique challenge by allowing adversaries to modify attack

patterns in due real time, continuously adapting the poisoned dataset and

rendering traditional defenses ineffective [5].

10.3 Strengthening Federated Learning

With the presence of myriad possible adversarial attacks, it’s crucial to take

extra steps to strengthen one of the main goals of preserving client data

privacy in FL. One possibility is secure aggregation where the server aggregates

local model updates from clients without learning individual updates. This

ensures that the server only receives the sum of updates and not the individual

updates themselves. While this method protects from malicious servers or

attacks on servers, there still needs to be an implementation where the nature

of local client data cannot be deciphered, even if local models or parameters

are accessed.

An intuitive step would be homomorphic encryption, which deals with a

cryptographic technique with computations being performed on encrypted data.

This means that the server can perform computation on encrypted local model

updates, without decrypting local model updates. While this may be a good

addition, a factor that needs to be considered is computational cost. Encrypting

all the data each time and then performing computation on encrypted data may

affect results and incur additional computational costs. With such methods and

their implications, the approach of DP arises in the middle, which addresses the

privacy concern more optimally.

10.4 Role of Differential Privacy

DP, which was proposed by Dwork et al. in 2006 [6], is an advanced solution in

which random noise is added to true outputs using rigorous mathematical

measures [7]. This leads to results that are statistically indistinguishable

between an original aggregate dataset and a differentially additive-noise one.

DP can take many forms; for example, label DP considers the situation where

only labels are sensitive information that should be protected and is usually

applied to differentially private vertical FL [8]. Additionally, Bayesian DP is

interested in the change in the posterior distribution of the attacker after

observing the private model, compared to the prior. Initially DP was applied at

the server levels, due to their centrality, to ensure the output doesn’t reveal

information about training data. However, subsequent research has led to the

concept of local differential privacy (LDP). This is a more stringent version of

differential privacy (DP) as the privacy measures are directly applied at the

client level. An added advantage is that it doesn’t require the confirmation of

truthful model aggregators. Hence, the need to completely trust the server gets

eliminated as the local model with noise is communicated to the aggregator [9].

Based on LDP, there has been an introduction of the shuffle model in recent

years. A trusted shuffler is added in between clients and server, with the aim of

shuffling the data items submitted by clients to achieve anonymization. This

means that each client satisfies the privacy guarantee of LDP when facing the

shuffler and then achieves the privacy guarantee of DP when facing the server

[8]. However, there will be additional computational overheads through this

which becomes more expensive as the amount of data increases.

Furthermore, using Projected Federated Averaging (PFA), updates from more

privacy-sensitive clients (private clients) can be projected using the model

updates from clients with larger privacy budgets (public clients). PFA ensures

differential privacy while removing noise and enhancing the accuracy of the

global model by using the top singular subspace from the public updates. To

further reduce communication costs, the methodology includes an extension

called PFA+, which requires private clients to send only projected model

updates. Experiments in the research stated that in terms of model utility,

privacy preservation, and communication efficiency, PFA and PFA+ performed

better than conventional federated averaging techniques [10].

10.5 Algorithmic Impacts

The algorithms through which concepts like FL and DP are implemented play a

salient role as they have the potential to impact various model parameters. FL

algorithms like SCAFFOLD [11, 12] are specifically designed to handle the

challenges of heterogeneous data across different devices. These algorithms

improve the stability and efficiency of model training by employing techniques

like “control variates” to reduce discrepancies, or “drift”, which can arise from

variations in local datasets. Furthermore, algorithms such as FedAvg with DP

introduce random noise to model updates to protect user privacy [13]. DP-

SCAFFOLD [14] is an extension to the SCAFFOLD framework by integrating DP

mechanisms adding noise to local model updates while also addressing data

heterogeneity. Its convergence analysis utilized a particular initialization of the

algorithm and focused on different quantities compared to the original proof.

This algorithm operates like standard FL approaches like FedAvg. Overall, it has

demonstrated a better performance both theoretically and empirically,

outperforming the baseline DP-FedAvg in various experimental scenarios.

When algorithms such as DP-FedAvg add noise to the local model after each

gradient step during the local training phase, it ensures that the contributions of

individual clients do not reveal sensitive information, even when integrated at

the server level. Additionally, gradient clipping [15] limits any individual user’s

influence on the model; this technique helps prevent excessively large updates

that could disproportionately affect the global model, adding a layer of

protection. The noise can be applied directly on the client device before it even

leaves the user’s environment or noise can be added after the updates are

received by the server but before they are integrated into the global model

[15]. This method occurs within a Trusted Execution Environment (TEE),

ensuring that even though updates are processed centrally, the privacy of

individual users is maintained. This dual approach of applying noise locally and

server-side, combined with the security provided by TEE, creates a privacy-

preserving environment that meets regulatory standards such as the General

Data Protection Regulation (GDPR).

While DP is normally used by introducing noise to the model weights before

sharing them through a private channel to the server mode, FEDMD-NFDP

seems to have a contrasting implementation. This arises because LDP requires

more rounds of communication to converge to a useful model due to addition of

noise, since noise can degrade the quality of shared predictions. FEDMD-NFDP

[16] is essentially designed to protect data privacy in FL without explicitly

adding noise. It focuses on knowledge distillation, where models share

predictions on a public dataset and the privacy is maintained through a random

sampling mechanism. Two sampling strategies can be explored – with

replacement and without replacement – of local data during model updates.

Thus, fewer rounds are required to reach the same performance for noise-free

DP, in comparison to LDP.

On the contrary, using device-level DP applies privacy guarantees to the

entire dataset on a user’s device rather than individual data points. This

ensures that even if a device holds a large amount of data, the contribution to

the model remains private. The differentially private-follow-the-regularized-

leader (DP-FTRL) [17] algorithm is a variant of DP-SGD designed for FL without

uniform client sampling. This algorithm clips local model updates from clients

and adds noise to these updates before aggregation. The noise is carefully

calibrated to ensure DP while balancing model utility.

Additionally, FedFGCR is a federated meta-learning framework aimed at

improving intelligent fault diagnosis (FD) in decentralized settings with

heterogeneous data while ensuring privacy. Traditional deep learning models for

FD face challenges due to data privacy concerns and varied data distributions

across clients. FedFGCR aims to address these issues by integrating meta-

learning techniques, specifically a Model-Agnostic Meta-Learning (MAML)

approach to combine global and local features for personalized model training.

Experiments on benchmark datasets (Case Western Reserve University [CWRU]

and the Korea Advanced Institute of Science and Technology [KAIST])

demonstrate that FedFGCR significantly outperforms existing FL methods like

FedAvg, FedProx, and FedPer showing improvements in accuracy and robustness

in handling non-IID data [18].

Similarly, the Federated Transfer Learning framework integrates DP to

enhance learning from multiple heterogeneous data sources while ensuring

data privacy. Introducing Federated Differential Privacy will provide privacy

guarantees without needing a trusted central server [19]. Further, a study

investigated the impact of privacy constraints and source data heterogeneity on

statistical estimation error rates across three classical statistical problems:

univariate mean estimation, low-dimensional linear regression, and high-

dimensional linear regression. Federated Virtual Clients (FedVC) and Federated

Importance Reweighting (FedIR), which reduce class imbalance and non-

identical class distributions, enhance performance. Two new large-scale

datasets that reflect real-world distribution patterns – one for landmark

recognition and the other for species classification (iNaturalist) – are used to

evaluate their methods [20].

Alternatively, BFV-based homomorphic encryption (Brakerski/Fan-Vercauteren

scheme) [21] is a type of ring-based fully homomorphic encryption that

supports secure and efficient computation on encrypted data. It supports both

additions and multiplication operations on cipher texts and the security is

derived from the hardness of the Ring Learning with Errors problem. FedCC

seems to offer reliable aggregation and the experiment results show that it

works well in non-independent and identically distributed (non-IID) data

environments and can prevent both targeted and untargeted model poisoning

or backdoor attacks. The most accuracy can be recovered for the global model

when FedCC is applied against untargeted attacks. FedCC also preserved test

accuracy while nullifying attack confidence against targeted backdoor attacks

[22].

Based on several research papers, it’s evident that there is no single

algorithm that can easily be decided upon. Each algorithm offers to improve

security, privacy, or heterogeneity issues through varied perspectives and

performs better with respect to varied parameters. The algorithmic steps and

the point of application are two key factors that have determined the outcome

of the algorithmic implementation. Figure 10.1 illustrates how various

algorithms can be applied along the FL architecture.

https://calibre-pdf-anchor.a/#a1082

Figure 10.1 Meta-learning and differential privacy applied in federated

learning.⏎

10.6 Meta Learning

While security concerns are heavily present, there is also a heterogeneity issue

that needs to be dealt with. Meta-learning significantly enhances the

adaptability of models in FL by enabling faster and more efficient training on

client-side data. One key limitation of traditional FL is its inability to effectively

adapt to diverse data distributions across client devices, which often lead to

degraded model performance when dealing with non-IID data. As noted by

Stojkovic et al., “Federated learning comes with many other challenges due to

its distributed nature, heterogeneous compute environments and lack of data

visibility” [15]. Meta learning addresses this by giving local models the ability to

learn quickly from a small number of data samples, thus improving their

performance even with sparse or heterogeneous data.

Recently, many works have begun to exploit various personalization

techniques [23] in order to obtain “personalized models” to solve this problem.

However, these methods cannot achieve flexible personalization and may

ignore the communication bottleneck challenge, which is worth considering in

the network applications. Per-FedAvg algorithm [24], combining MAML [25] with

FedAvg [26], can quickly obtain personalized models adapted to the data of

devices as it’s motivated by the idea of mixing local and global models

presented in new formulation of FL [23]. It allows clients to customize the global

model using the personalization coefficient (α) as introduced in the

Communication Efficient Personalized Federated Meta-Learning algorithm. This

coefficient controls how much the local client relies on the global model versus

its local model. By adjusting this parameter, better model adaptation can be

achieved for clients with different data distributions [1].

Moreover, to address the communication bottleneck challenge in FL,

representation learning can be utilized to reduce communication overhead.

Representation learning helps encode high-dimensional data into lower-

dimensional representation, which can then be transmitted with significantly

less bandwidth. This reduces the amount of data sent between clients and the

server, addressing the communication bottleneck that typically hampers FL

systems. By adopting techniques like compressed model updates and efficient

data encoding, communication costs can be minimized without sacrificing

model performance. There exist various other hybrid models for cloud, fog, and

edge in recent years [27–31].

10.7 CNNS in Federated Learning

A CNN is a category of ML models, namely a type of deep learning algorithm

well suited to analyzing visual data. CNNs – sometimes referred to as convnets –

use principles from linear algebra, particularly convolution operations, to

extract features and identify patterns within images. CNNs are highly adaptable

and continue to evolve as researchers develop more complex architectures for

the increasingly complex tasks. Algorithms such as transfer learning allow pre-

trained CNNs to be fine-tuned for specific tasks, reducing the amount of data

and resources required for training from scratch.

In the context of FL, CNNs can be deployed across multiple clients, allowing

each of them to train the CNN locally using its own image data. It would be a

natural fit for FL applications where visual data from distributed clients, such as

medical images or surveillance videos, need to be collaboratively processed

without compromising privacy. Techniques like personalized learning and

domain adaptation are used to address problems such as data heterogeneity.

Communication from large CNNs is mitigated through gradient compression,

pruning, and federated dropout. Security concerns such as adversarial attacks

and data leakage can be countered using secure aggregation, homomorphic

encryption, and differential privacy – particularly local DP to secure client-side

communication [32].

CNN architectures like Network in Network (NIN), Visual Geometry Group - 9

Layer Network (VGG-9), and Extended Modified National Institute of Standards

and Technology-Merged (EMNIST-M) can be used for classification tasks,

implementing adversarial training methods and aggregation algorithms to

optimize performance and convergence [33]. In addition, image segmentation

using 3D U-Net CNN can be used to combine multiple CNN models to improve

accuracy and uncertainty estimation [34]. A method to enhance the image

classification performance is through differentially private stochastic gradient

descent (DP-SGD). When properly adjusted, over-parameterized models can

attain high accuracy even in the presence of differential privacy (DP)

constraints. This can be achieved by utilizing strategies like group

normalization, weight standardization, augmentation multiplicity, and

parameter averaging in addition to carefully optimizing hyperparameters like

batch size, noise level, and gradient clipping. This approach has produced state-

of-the-art results on both CIFAR-10 and ImageNet [35].

Moreover, an application of FL and DP can be explored through a privacy-

preserving framework for analyzing medical images [36]. Medical data are

sensitive and cannot be easily shared across institutions due to privacy

regulations like GDPR and Health Insurance Portability and Accountability Act

(HIPAA). FL allows collaborative learning by training models locally on

distributed datasets across different hospitals, without data centralization.

Incorporating near-zero centered activation functions like Sigmoid Linear Unit

(SiLU) and Gaussian Error Linear Unit (GELU), reducing activation and

normalization layers, and using larger kernel sizes, this design improves the

model’s robustness in handling non-IID data, outperforming advanced

architectures such as Vision Transformers and ConvNeXt. Furthermore,

overlapping convolutions and convolution-only downsampling in the stem layer

seems to improve feature extraction and model stability, resulting in better

performance across various FL benchmarks [17]. Many other similar work using

optimization algorithm are discussed in [37–40] using ANN and nature inspired

optimization model.

10.8 Factors Affecting Cnns

Including CNNs in FL offers significant opportunities for privacy-preserving

image classification yet raises unique challenges, such as computational

limitations, data heterogeneity, and maintaining model performance under

privacy constraints. In general, choosing appropriate CNN architecture plays an

important role. With their significantly low computational and communication

cost, lightweight architectures like MobileNet and SqueezeNet suit the FL

implementation best due to such environmental scarcity in hardware resources.

Additionally, it will be perfectly applicable to those architectures allowing

hierarchical extraction of features, where the nature of generalization would

remain stronger to various diverse data distributions like ResNet. Recent

innovations, such as FedConv, have optimized CNNs for FL further by giving

smoother activation functions, reducing normalization layers, and increasing

kernel sizes, and hence robust to non-IID setups.

The data heterogeneity that afflicts FL can be addressed through the use of

personalized FL. For example, Per-FedAvg combines model-agnostic meta-

Learning with federated averaging: it enables personalization through a per-

client personalization coefficient by making it possible to fine-tune global

models toward each client’s local datasets. More specifically, algorithms

FedProx and SCAFFOLD account for client drift through the regularization term

and the use of control variates, respectively, improving the stability of the

training across clients of various classes. Using models that effectively adjust to

various client data may help with domain adaptation and transfer learning.

Sharing synthetic data generated from public datasets could also be considered

to enhance the features among underrepresented clients in order to further

reduce imbalances.

Privacy preservation is a key concern in FL. A popular technique used in this

context is DP-SGD, which adds noise during the gradient update process to

preserve client data while retaining the utility of the model. PFA improves on

this by optimizing communication efficiency and increasing the accuracy of the

global model when heterogeneous privacy budgets exist among clients. With

very high computational costs, homomorphic encryption still warrants robust

privacy guarantees for sensitive applications, such as the analysis of medical

images, though high-care trade-offs between computational costs and privacy

interests are necessary for such applications. Real-world applications

demonstrate the feasibility and benefits of these techniques. For example, CNN-

based FL has been widely applied to medical image classification applications,

such as histopathology for lung cancer subtyping, where DP-SGD ensures

compliance with privacy regulations, such as HIPAA. Similarly, privacy-

preserving frameworks using LDP have been applied in various video

surveillance systems and industrial fault detection scenarios, while ensuring

secure collaboration across decentralized datasets.

Table 10.1 provides a comparison analysis of several existing research works

across FL, DP, CNNs, and meta-learning. Their primary methodology has been

summarized along with the key strengths and limitations that may be

encountered. This highlights the current gaps and limitations that persist, which

may perhaps be overcome by other research efforts.

Table 10.1 Comparison Analysis of Various Existing Methodologies⏎

TITLE METHODOLOGY STRENGTHS LIMITATIONS

Communication-

Efficient

Personalized

Proposes

Communication

Efficient Personalized

Reduces

communication

costs; enables

Complexity in

implementation;

may require

TITLE METHODOLOGY STRENGTHS LIMITATIONS

Federated

Meta-Learning

in Edge

Networks [1]

Federated Meta-

Learning to reduce

communication

overhead in edge

networks. Introduces

personalized

parameters to enhance

model adaptation.

participation

from resource-

limited

devices;

balances

global and

local model

performance.

extensive tuning

for different

environments;

personalization

can complicate

model

convergence.

A Differentially

Private

Federated

Learning Model

against

Poisoning

Attacks in Edge

Computing [2]

Designs a weight-based

algorithm for anomaly

detection of parameters

uploaded by devices,

enhancing detection

rates with minimal

communication costs.

Provides strong

privacy

guarantees;

minimizes

communication

overhead;

addresses

poisoning

attacks

effectively.

The assumption

of benign clients

may not hold in

practice;

potential

accuracy trade-

offs due to noise

addition.

FEDSECURITY: A

Benchmark for

Attacks and

Defenses in

Federated

Learning and

Federated LLMS

[3]

The methodology of the

FedSecurity framework

is built around two main

components:

FedAttacker and

FedDefender.

FedAttacker simulates

various adversarial

attacks during

federated learning (FL)

training.

Comprehensive

benchmarking

capabilities

and flexibility.

It covers a

wide array of

attacks and

defenses,

making it a

robust tool for

evaluating

security in FL

systems.

The introduction

of defense

mechanisms may

negatively impact

the performance

of the global

model,

necessitating a

careful balance

between security

and efficiency.

PADP-FedMeta:

A personalized

and adaptive

differentially

private

federated meta

learning

mechanism for

AIoT [4]

This approach

combines federated

learning (FL) and

differential privacy (DP)

to address the

limitations of

conventional FL

methods, especially in

non-independent and

PADP-FedMeta

significantly

improves upon

existing FL

methods by

ensuring

robust

personalization

and privacy

without

Reliance on

differential

privacy still

introduces noise

that can slightly

reduce model

accuracy.

TITLE METHODOLOGY STRENGTHS LIMITATIONS

identically distributed

data environments.

sacrificing

accuracy.

Dynamic

Backdoor

Attacks against

Federated

Learning [5]

Discusses backdoor

attacks in the context

of federated learning.

Introduces the

Symbiosis Network to

enhance robustness

against dynamic

attacks by modifying

local models during

training.

Increases

robustness

against

backdoor

attacks;

provides

insights into

adversarial

machine

learning in

federated

settings.

Focuses on

specific attack

scenarios; may

not generalize to

all federated

learning

environments;

implementation

can be complex.

Privacy-

Preservation

Techniques in

Federated

Learning: An

insightful

survey from a

GDPR

Perspective [7]

Surveys privacy-

preservation

techniques in FL with a

focus on GDPR

compliance. Discusses

state-of-the-art

techniques like secure

aggregation, differential

privacy, homomorphic

encryption, data

anonymization, and

SMC.

Addresses

important legal

and ethical

concerns

regarding data

privacy;

provides a

comprehensive

overview of

privacy-

preserving

techniques;

emphasizes

compliance

with GDPR.

Potentially

limited by the

complexity of

implementing

privacy

techniques in

real-world FL

scenarios.

Differentially

Private

Federated

Learning: A

Systematic

Review [8]

A systematic review

approach, categorizing

and analyzing over 70

studies on differentially

private federated

learning (DP-FL). It

introduces a new

taxonomy based on

privacy definitions.

Comprehensive

and structured

approach to

categorizing

DP models.

New Taxonomy:

Proposes a

novel

classification

for better

clarity in DP

models.

No Empirical

Validation – lacks

experiments to

validate

theoretical

claims.

TITLE METHODOLOGY STRENGTHS LIMITATIONS

FedCC: Robust

Federated

Learning with

CNNs Against

Poisoning

Attacks [22]

Proposes a federated

learning framework

that detects and

mitigates poisoning

attacks during CNN

training. This is

achieved using

anomaly detection

techniques to identify

malicious clients.

Shows high

robustness

against both

data and

model

poisoning

attacks;

improves

accuracy and

model security

in collaborative

learning.

The method adds

significant

overhead to

training time;

limited

evaluation of

robustness

against

sophisticated

adversarial

attacks.

A Personalized

Federated

Meta-Learning

Method for

Intelligent and

Privacy-

Preserving

Fault Diagnosis

[18]

Introduces the

federated meta-

learning based on fine-

grained classifier

reconstruction

(FedFGCR), designed

for personalized fault

diagnosis in industrial

settings. The

framework operates in

two phases: local

training phase and

server aggregation

phase.

Enhances fault

classification

accuracy while

maintaining

privacy;

suitable for

industries with

high data

privacy

concerns;

optimizes

classifiers

collaboratively.

Limited by the

quality of local

data; complexity

in

implementation;

challenges in

ensuring fairness

and efficiency

across clients.

Differentially

Private

Federated

Learning on

Heterogeneous

Data [14]

The paper proposes DP-

SCAFFOLD, an

algorithm that

integrates differential

privacy (DP) with the

SCAFFOLD framework

to address two main

challenges in federated

learning (FL): handling

heterogeneous data

and ensuring privacy

against an “honest-but-

curious” server.

DP-SCAFFOLD

effectively

balances

privacy and

utility in FL by

leveraging

control

variates and

noise addition

to minimize

user-drift and

variance.

Sensitive to the

trade-off between

noise addition

and the number

of local updates,

which can impact

performance if

not properly

tuned.

Improving

Federated

The paper connects

federated learning (FL)

Provides novel

insights by

The proposed

two-stage

TITLE METHODOLOGY STRENGTHS LIMITATIONS

Learning

Personalization

via Model

Agnostic Meta

Learning [24]

and Model Agnostic

Meta Learning (MAML)

by interpreting the

Federated Averaging

(FedAvg) algorithm as a

meta-learning

algorithm. It proposes a

novel modification of

FedAvg with two stages

of training and fine-

tuning to optimize for

personalized

performance.

connecting FL

and MAML,

showing that

FedAvg can be

seen as a

meta-learning

algorithm and

highlighting

the importance

of personalized

performance in

FL.

training and fine-

tuning process

adds complexity

to the FL system,

which may be

challenging to

implement in

real-world

scenarios.

Model-Agnostic

Meta-Learning

for Fast

Adaptation of

Deep Networks

[25]

The paper proposes the

Model-Agnostic Meta-

Learning (MAML)

algorithm, which trains

a model to adapt

quickly to new tasks

using minimal data.

The MAML

approach is

general and

model-

agnostic,

meaning it can

work with any

model trained

via gradient

descent. It

provides state-

of-the-art

performance in

few-shot

learning

scenarios and

is effective

across different

learning

domains.

One major

limitation is the

computational

complexity due

to the second-

order derivatives

required for the

gradient update

process.

Communication-

Efficient

Learning of

Deep Networks

from

Decentralized

Data [26]

The paper introduces

federated learning. The

FedAvg approach

reduces the

communication cost by

limiting the number of

rounds and amount of

data exchanged

The privacy-

preserving

nature of

federated

learning is a

key strength,

as it eliminates

the need for

The main

limitation is the

complexity of

handling non-IID

data at scale.

TITLE METHODOLOGY STRENGTHS LIMITATIONS

between devices and

the server.

data to be

centralized,

significantly

reducing

privacy risks.

Federated

Learning of a

Mixture of

Global and

Local Models

[23]

The paper proposes a

novel optimization

which is a penalty

parameter, λ, to control

the trade-off. The

authors develop the

Loopless Local Gradient

Descent (L2GD)

algorithm, which

employs randomized

local steps and

variance reduction

techniques to solve this

new formulation.

The proposed

method

handles

heterogeneous

data efficiently,

without

requiring

assumptions of

data similarity

across devices.

It improves

communication

efficiency by

minimizing the

number of

communication

rounds needed

for

convergence.

The randomness

in local steps

introduces

variability that

may affect

convergence

rates across

devices.

Complexity of

implementing

multiple SGD

variants with

variance

reduction poses

practical

challenges for

real-world

deployment.

Applied

Federated

Learning:

Architectural

Design for

Robust and

Efficient

Learning in

Privacy Aware

Settings [15]

The paper presents an

architecture for

federated learning that

combines server-side

and device-side data

for training models in a

privacy-aware setting,

focusing on binary

classifiers. Model

training occurs locally,

and updates are sent to

a server in a Trusted

Execution Environment

(TEE) for secure

aggregation.

By keeping

user data on

devices and

applying

differential

privacy, the

architecture

protects user

privacy while

allowing model

training at

scale.

Federated

learning on

mobile devices is

significantly

slower than

centralized

training, leading

to delayed model

development

cycles.

Adversarial

Training in

The paper explores

adversarial training (AT)

The

introduction of

The dynamic

scheduling

TITLE METHODOLOGY STRENGTHS LIMITATIONS

Communication

Constrained

Federated

Learning [33]

within a federated

learning (FL) framework

to enhance the

robustness of CNN

models against

adversarial attacks

under communication

constraints and non-IID

data conditions.

FedDynAT

effectively

balances

communication

overhead and

model

accuracy,

making it a

practical

solution for

federated

learning with

adversarial

training.

mechanism of

FedDynAT adds

complexity to the

training process,

which might

make

implementation

challenging in

large-scale or

resource-

constrained

environments.

Federated

Cross Learning

for Medical

Image

Segmentation

[34]

The paper proposes

Federated Cross

Learning (FedCross) to

address challenges in

federated learning (FL)

for medical image

segmentation on non-

IID data.

FedCross

effectively

tackles the

non-IID

problem by

avoiding model

aggregation,

leading to

improved

model

performance

on distributed

medical data.

A potential

weakness of

FedCross is

catastrophic

forgetting, as the

sequential

training approach

may cause the

model to

underperform on

datasets it has

not encountered

for some time.

BFV-Based

Homomorphic

Encryption for

Privacy-

Preserving CNN

Models [21]

The paper proposes a

privacy-preserving

framework combining

Convolutional Neural

Networks (CNNs) with

BFV-based

homomorphic

encryption in a

federated learning (FL)

setting.

The use of BFV-

based

homomorphic

encryption

ensures that

sensitive data

and model

updates are

never exposed,

providing

robust privacy

guarantees in

federated

learning.

Homomorphic

encryption is

computationally

expensive,

especially when

applied to large

CNN models,

resulting in

slower training

and higher

resource

consumption.

TITLE METHODOLOGY STRENGTHS LIMITATIONS

Federated

Learning and

Differential

Privacy for

Medical Image

Analysis [36]

Combines federated

learning (FL) and

differential privacy (DP)

to train models for

histopathology image

classification,

particularly lung cancer

subtypes, across

multiple hospitals

without sharing data.

Uses FedAvg for

decentralized training

and differentially

private stochastic

gradient descent (DP-

SGD) to ensure privacy,

clipping gradients and

adding Gaussian noise.

Demonstrates

that FL with DP

can match

centralized

training

performance

while providing

strong privacy

guarantees.

Effectively

handles real-

world medical

image data,

allowing

collaboration

without direct

data sharing

between

hospitals.

DP-SGD is

sensitive to

hyperparameters,

requiring careful

tuning to

maintain both

privacy and

performance.

Performance

decreases when

data distributions

differ significantly

between

hospitals.

Federated

Model

Distillation with

Noise-Free

Differential

Privacy [16]

The paper proposes a

novel federated model

distillation framework

called FEDMD-NFDP,

which utilizes a noise-

free differential privacy

(NFDP) mechanism to

ensure privacy without

adding noise. The

methodology involves a

two-step process where

each party first digests

a public dataset and

then revisits their

private data for further

refinement.

Achieves

differential

privacy without

the drawbacks

of noise

addition. The

NFDP

mechanism

allows for

effective

knowledge

sharing among

parties while

maintaining

strong privacy

guarantees.

NFDP may still be

susceptible to

biases introduced

by the public

dataset used for

model updates.

Performance of

the proposed

method could

vary based on

the distribution of

the public and

private datasets.

Federated

Learning of

Gboard

Language

Models with

Differential

Privacy [17]

Utilizes federated

learning (FL) with

differential privacy (DP)

to train Gboard

language models (LMs)

for next-word prediction

and other features.

Successfully

deploys more

than 20

Gboard models

with formal DP

guarantees,

providing

Hyperparameter

tuning and

achieving optimal

privacy-utility

trade-offs are still

challenging,

especially with

TITLE METHODOLOGY STRENGTHS LIMITATIONS

Implements DP-Follow-

the-Regularized-Leader

with adaptive clipping

to limit user

contribution and

improve privacy

guarantees.

strong user

data protection

without

sacrificing

model utility.

large-scale client

participation

requirements.

FEDCONV:

Enhancing

Convolutional

Neural

Networks for

Handling Data

Heterogeneity

in Federated

Learning [32]

Modify CNNs with

smooth activation

functions (e.g., SiLU),

reduce

activation/normalization

layers, and adopt larger

kernel sizes for

robustness in federated

learning (FL) with

heterogeneous data.

The novel

FedConv CNN

architecture

improves

accuracy by

significant

margins (e.g.,

92.21% on

COVID-FL,

54.19% on

iNaturalist).

The proposed

architectural

modifications,

like larger kernel

sizes and

overlapping

convolutions,

could introduce

higher

computational

costs, particularly

in resource-

constrained

settings.

Federated

Transfer

Learning with

Differential

Privacy [19]

The paper introduces a

federated transfer

learning framework

that utilizes federated

differential privacy

(FDP) to enhance

learning from multiple

heterogeneous data

sources while ensuring

privacy.

The proposed

FDP framework

provides robust

privacy

guarantees

without

needing a

trusted central

server, making

it suitable for

real-world

applications

where data

privacy is

paramount.

The study

acknowledges

that the

performance of

the proposed

methods may

degrade when

the source data

sets are

significantly

dissimilar from

the target data

set, potentially

leading to

negative transfer

effects.

Local

Differential

Privacy-Based

Federated

The paper proposes a

hybrid approach that

combines federated

learning (FL) with local

The

introduction of

multiple LDP

mechanisms

While the

proposed

methods improve

upon existing

TITLE METHODOLOGY STRENGTHS LIMITATIONS

Learning for

Internet of

Things [9]

differential privacy

(LDP) to enhance

privacy in Internet of

Things (IoT)

applications. It

introduces four LDP

mechanisms, which

offers multiple output

possibilities to improve

accuracy while

minimizing

communication costs.

enhances

flexibility and

performance

across varying

privacy

budgets.

LDP techniques,

they may

struggle with

scalability as the

number of

connected

devices

increases.

Federated

Visual

Classification

with Real-World

Data

Distribution

[20]

The paper introduces a

Projected Federated

Averaging (PFA)

approach that utilizes

heterogeneous

differential privacy (DP)

to enhance model

utility while ensuring

privacy.

Innovative

aggregation

strategy that

effectively

balances

privacy and

utility by

leveraging the

strengths of

both public and

private client

updates.

PFA may still be

vulnerable to

biases introduced

by the influence

of “public”

clients’ updates,

which could

dominate the

model training

process.

Unlocking High-

Accuracy

Differentially

Private Image

Classification

through Scale

[35]

The paper employs

differentially private

stochastic gradient

descent and explores

the interplay between

noise, batch size,

compute budget, and

learning rate to

optimize performance

while maintaining

privacy guarantees.

A significant

strength of the

paper is its

ability to

unlock high-

accuracy

image

classification

under DP

constraints,

achieving

state-of-the-art

results on

academic

datasets.

Applying it to

real-world

sensitive data

involves

additional

considerations

regarding privacy

budgets and

potential

accuracy

reductions for

under-

represented

subgroups.

Projected

Federated

The paper introduces

Projected Federated

The use of

PFA+

A key weakness

is the potential

TITLE METHODOLOGY STRENGTHS LIMITATIONS

Averaging with

Heterogeneous

Differential

Privacy [10]

Averaging (PFA), which

optimizes federated

learning (FL) by

addressing the

challenge of

heterogeneous privacy

budgets.

significantly

reduces

communication

costs –

achieving over

99%

communication

reduction for

private clients

– without

sacrificing

much model

accuracy.

bias from public

clients, whose

updates may

dominate the

global model and

impact fairness.

10.9 Conclusion

In conclusion, FL offers a relatively promising framework for decentralized ML,

ensuring privacy by avoiding the need for raw data sharing. However, the

challenges of adversarial attacks, privacy leakage, and data heterogeneity

present significant obstacles. This chapter has examined the potential solutions,

particularly DP and meta-learning, which show prospects in enhancing both

security and adaptability. The integration of DP protects sensitive information

through noise introduction, while meta-learning offers adaptability to diverse

client data. Further, in the domain of CNNs for image classification, these

techniques can pave the way to help balance privacy and adaptability needs.

However, there still remains uncertainty in maintaining these factors along with

desirable model accuracy simultaneously for CNN classifications. In the future, a

balance between security, adaptability, and performance will be salient. This

highlights the need for further research to optimize application points of DP and

meta-learning together in FL architectures and algorithms in the context of

CNNs.

References

1.Yu, F., Lin, H., Wang, X., Garg, S., Kaddoum, G., Singh, S., & Hassan, M. M.

(2023). Communication-efficient personalized federated meta-learning in

edge networks. IEEE Transactions on Network and Service Management,

20(2). https://doi.org/10.1109/TNSM.2023.3263831⏎

2.Zhou, J., Wu, N., Wang, Y., Gu, S., Cao, Z., Dong, X., & Choo, K-K. R. (2022). A

differentially private federated learning model against poisoning attacks in

edge computing. IEEE Transactions on Dependable and Secure Computing,

https://doi.org/10.1109/TNSM.2023.3263831

20(3), 1941–1941. https://doi.org/10.1109/TDSC.2022.3168556; Learning on

Heterogeneous Data. AISTATS Conference, Vol. 151.⏎

3.Anonymous. (n.d.). Fedsecurity: A benchmark for attacks and defenses in

federated learning and federated LLMS. In Under review as a conference

paper at ICLR 2024.⏎

4.Dong, F., Ge, X., Li, Q., Zhang, J., Shen, D., Liu, S., Liu, X., Li, G., Wu, F., & Luo,

J. (2023). PADP-FedMeta: A personalized and adaptive differentially private

federated meta learning mechanism for AIoT. Journal of Systems Architecture,

134, Art. 102754. https://doi.org/10.1016/j.sysarc.2022.102754⏎

5.Huang, A., & WeBank AI Lab. (2020). Dynamic backdoor attacks against

federated learning. arXiv.⏎

6. Dwork, C. (2006). Differential Privacy. International Colloquium on Automata,

Languages, and Programming (ICALP), vol. 2006, pp. 1–12.

https://link.springer.com/chapter/10.1007/11787006_1.⏎

7.Truong, N., Sun, K., Wang, S., Guitton, F., Data Science Institute, Imperial

College London, Department of Computer Science, & Hong Kong Baptist

University. (2021). Privacy preservation in federated learning: An insightful

survey from the GDPR perspective. Computers & Security, 110, 102402.

https://doi.org/10.1016/j.cose.2021.102402⏎

8.Fu, J., Hong, Y., Ling, X., Wang, L., Ran, X., Sun, Z., Hui Wang, W., Chen, Z., &

Cao, Y. (2024). Differentially private federated learning: A systematic review.

arXiv, 2405.⏎

9.Zhao, Y., Zhao, J., Yang, M., Wang, T., Wang, N., Lyu, L., Niyato, & Lam. (2021).

Local differential privacy-based federated learning for internet of things. IEEE

Internet of Things Journal, 8(11). https://doi.org/10.1109/JIOT.2020.3037194⏎

10.Liu, J., Lou, J., Xiong, L., Liu, J., & Meng, X. (2022). Projected federated

averaging with heterogeneous differential privacy. PVLDB, 15(4), 828–840).

https://doi.org/10.14778/3503585.3503592⏎

11. Karimireddy, S., et al. (2020). SCAFFOLD: Stochastic Controlled Averaging

for Federated Learning. Proceedings of the 37th International Conference on

Machine Learning, vol. 119, edited by Hal Daumé III and Aarti Singh, PMLR,

2020, pp. 5132–5143.

https://proceedings.mlr.press/v119/karimireddy20a.html.⏎

12. Li, T., et al. (2020). Federated Optimization in Heterogeneous Networks.

arXiv. https://arxiv.org/abs/1812.06127.⏎

13. Triastcyn, A., & Faltings, B. (2019). Federated Learning with Bayesian

Differential Privacy. In 2019 IEEE international conference on big data (Big

Data), IEEE, Dec. 2019, pp. 2587–2596.

https://doi.org/10.1109/BigData47090.2019.9005465⏎

14.Noble, M., Bellet, A., & Dieuleveut, A. (2022). Differentially private federated

learning on heterogeneous data. In International conference on artificial

intelligence and statistics, pp. 10110–10145. PMLR.⏎

https://doi.org/10.1109/TDSC.2022.3168556
https://doi.org/10.1016/j.sysarc.2022.102754
https://link.springer.com/chapter/10.1007/11787006_1
https://doi.org/10.1016/j.cose.2021.102402
https://doi.org/10.1109/JIOT.2020.3037194
https://doi.org/10.14778/3503585.3503592
https://proceedings.mlr.press/v119/karimireddy20a.html
https://arxiv.org/abs/1812.06127
https://doi.org/10.1109/BigData47090.2019.9005465

15.Stojkovic, B., Woodbridge, J., Fang, Z., Cai, J., Petrov, A., Iyer, S., Huang, D.,

Yau, P., Kumar, A. S., Jawa, H., Guha, A., & Meta. (2022). Applied federated

learning: Architectural design for robust and efficient learning in privacy

aware settings. arXiv.⏎

16.Sun, L., Lyu, L., Lehigh University, & Ant Group. (2021). Federated model

distillation with noise-free differential privacy. arXiv [Report].

https://arxiv.org/abs/2009.05537v2⏎

17.Xu, Z., Zhang, Y., Andrew, G., Choquette-Choo, C. A., Kairouz, P., McMahan,

H. B., Rosenstock, J., Zhang, Y., & Google. (2023). Federated learning of

Gboard language models with differential privacy. arXiv, 2305.⏎

18.Zhang, X., Li, C., Han, C., Li, S., Feng, Y., Wang, H., Cui, Z., & Gryllias, K.

(2024). A personalized federated meta-learning method for intelligent and

privacy-preserving fault diagnosis. Advanced Engineering Informatics, 62, Art.

102781. https://doi.org/10.1016/j.aei.2024.102781⏎

19.Li, M., Tian, Y., Feng, Y., Yu, Y., Department of Statistics, University of

Warwick, Department of Statistics, Columbia University, & Department of

Biostatistics, School of Global Public Health, New York University. (2024).

Federated transfer learning with differential privacy. arXiv, 2403.⏎

20.Hsu, T.-M. H., Qi, H., & Brown, M. (2020). Federated visual classification with

real-world data distribution. arXiv. https://arxiv.org/abs/2003.08082v3⏎

21.Wibawa, F., Catak, F. O., Sarp, S., & Kuzlu, M. (2022). BFV-Based

homomorphic encryption for privacy-preserving CNN models. Cryptography,

6(3), 34. https://doi.org/10.3390/cryptography6030034⏎

22.Jeong, H., Son, H., Lee, S., Hyun, J., & Chung, T-M. (2024). FedCC: Robust

federated learning against model poisoning attacks. IEEE Access, 1(991),

20.⏎

23.Jiang, Y., Koneˇcn´Y, J., Rush, K., & Kannan, S. (2023). Improving federated

learning personalization via model agnostic meta learning. arXiv, 1909.⏎

24.Hanzely, F., Richtárik, P., & King Abdullah University of Science and

Technology. (2021). Federated learning of a mixture of global and local

models. arXiv.⏎

25.Finn, C., Abbeel, P., Levine, S., University of California, Berkeley, & OpenAI.

(2017). Model-agnostic meta-learning for fast adaptation of deep networks. In

Proceedings of the 34th International Conference on Machine Learning: Vol.

PMLR 70 [Conference proceeding].⏎

26.McMahan, H. B., Moore, E., Ramage, D., Hampson, S., & Google, Inc. (2017).

Communication-efficient learning of deep networks from decentralized data.

In Proceedings of the 20th International Conference on Artificial Intelligence

and Statistics (AISTATS) 2017 (Vol. 54). https://arxiv.org/pdf/1602.05629.pdf

(Original work published 2023)⏎

27.Madhusudhan, H. S., Gupta, P., Saini, D. K., & Tan, Z. (2023). Dynamic virtual

machine allocation in cloud computing using elephant herd optimization

https://arxiv.org/abs/2009.05537v2
https://doi.org/10.1016/j.aei.2024.102781
https://arxiv.org/abs/2003.08082v3
https://doi.org/10.3390/cryptography6030034
https://arxiv.org/pdf/1602.05629.pdf

scheme. Journal of Circuits, Systems and Computers, 32(11), Art. 2350188.⏎

28.Rawat, P. S., Gaur, S., Barthwal, V., Gupta, P., Ghosh, D., Gupta, D., &

Rodrigues, J. J. C. (2025). Efficient virtual machine placement in cloud

computing environment using BSO-ANN based hybrid technique. Alexandria

Engineering Journal, 110, 145–152.

29.HS, M., & Gupta, P. (2024). Federated learning inspired Antlion based

orchestration for Edge computing environment. PLoS One, 19(6), Art.

e0304067.

30.Gupta, P., Anand, A., Agarwal, P., & McArdle, G. (2024). Neural network

inspired efficient scalable task scheduling for cloud infrastructure. Internet of

Things and Cyber-Physical Systems, 4, 268–279.

31.HS, M., Gupta, P., & McArdle, G. (2023). A Harris Hawk Optimisation system

for energy and resource efficient virtual machine placement in cloud data

centers. PLoS One, 18(8), Art. e0289156.⏎

32.Xu, P., Wang, Z., Mei, J., Qu, L., Yuille, A., Xie, C., & Zhou, Y. (2023).

FEDCONV: Enhancing convolutional neural networks for handling data

heterogeneity in federated learning. arXiv:2310.04412v1 [cs.CV] 6 Oct 2023,

1. https://arxiv.org/abs/2310.04412v1⏎

33.Shah, D., Dube, P., Chakraborty, S., Verma, A., & Department of Computer

Science, University of Illinois, Urbana Champaign, & I.B.M T.J. Watson

Research Center. (2021). Adversarial training in communication constrained

federated learning. arXiv.⏎

34.Federated cross learning for medical image segmentation. (2023). In

Proceedings of Machine Learning Research (pp. 1–12).

https://github.com/DIAL-RPI/FedCross⏎

35.De, S., Berrada, L., Hayes, J., Smith, S. L., & Balle, B. (2022). Unlocking high-

accuracy differentially private image classification through scale. arXiv:

2204.13650v2 (pp. 1–2). https://arxiv.org/abs/2204.13650v2⏎

36.Adnan, M., Kalra, S., Cresswell, J. C., Taylor, G. W., & Tizhoosh, H. R. (2022).

Federated learning and differential privacy for medical image analysis.

Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-05539-7⏎

37.Mustapha, S. D. S., & Gupta, P. (2024). DBSCAN inspired task scheduling

algorithm for cloud infrastructure. Internet of Things and Cyber-Physical

Systems, 4, 32–39.⏎

38.Gupta, P., Rawat, P. S., Kumar Saini, D., Vidyarthi, A., & Alharbi, M. (2023).

Neural network inspired differential evolution based task scheduling for cloud

infrastructure. Alexandria Engineering Journal, 73, 217–230.

39.Madhusudhan, H. S., Gupta, P., Saini, D. K., & Tan, Z. (2023). Dynamic virtual

machine allocation in cloud computing using elephant herd optimization

scheme. Journal of Circuits, Systems and Computers, 32(11), Art. 2350188.

40.Rawat, P. S., Gaur, S., Barthwal, V., Gupta, P., Ghosh, D., Gupta, D., &

Rodrigues, J. J. C. (2025). Efficient virtual machine placement in cloud

https://arxiv.org/abs/2310.04412v1
https://github.com/DIAL-RPI/FedCross
https://arxiv.org/abs/2204.13650v2
https://doi.org/10.1038/s41598-022-05539-7

computing environment using BSO-ANN based hybrid technique. Alexandria

Engineering Journal, 110, 145–152.⏎

Chapter 11

EP-MPCHS: Edge Server-Based Cloudlet

Offloading Using Multi-Core and Parallel

Heap Structures

Rajkumar Nagulsamy, Manisha Gupta, and Punit Gupta

DOI: 10.1201/9781003610168-11

11.1 Introduction

In today’s landscape of cloud computing, mobile technologies have started utilizing

applications with high computational needs. Hence, task–resource management has

become a crucial research domain for mobile resource offloading. Throughout the last ten

years, cloud computing has emerged as one of the most appealing alternatives for hosting

applications via the Internet infrastructure. Computing in the cloud is based on the use of

centralized computing resources located in data centers. This practice alleviates the

burden of infrastructure administration and enables service providers to provide cloud

services at reasonable costs for both people and organizations.

The role of cloud computing as a catalyst for digital transformation has led to mobile

technologies having a multitude of use cases in recent times, including augmented reality,

designing mobile applications, cross-platform gaming, and so on. These scenarios continue

to raise the standard in terms of how people utilize software programs in their day-to-day

lives. With the emergence of these software solutions, it has become apparent that the

concentration of cloud computing to data centers around a small number of global large-

scale infrastructures (like Google, Azure, and Amazon) has resulted in the setup facing

latency issues due to geographical distance from end devices. This distance causes

reaction times that are incompatible with the real-time needs of the applications in

question.

Therefore, the use of edge computing and its seminal role in offloading mobile

application task computations is unavoidable. Cloud-native applications like Amazon Web

Services (AWS) and Google Cloud Platform (GCP) for task offloading require high latency

and bandwidth and are constrained to the unforeseen case of service unavailability. The

usage of Cloudlet or a small-scale computationally viable resource center available at the

edge of the network peripheral zone is the more plausible option. The Virtual machine

(VM)-based cloudlet offloading proposed in this study takes advantage of small-scale

resource management procedures, rather than high-scale centralized cloud computing data

center environments like AWS or GCP.

The distributed computation-based system leverages resources by creating a highly

available cloudlet processing application using edge-scale devices by offloading in real

http://doi.org/10.1201/9781003610168-11

time. The procedure highlights the enhanced high computing tasks to be split in

computational parallel pipelines, which can be performed across edge devices as a form of

device-to-device (D2D) cloudlet offloading, and the final output can be computed in a

centralized fashion at the remote cloud through highly available offloading techniques. The

availability of data sources nearby is the main characteristic of the edge-based cloudlet

computing mechanism (ECM) technique. ECM facilitates the diversion of tasks between

high-scale system units to AWS or GCP and edge-based offloading options. ECM

infrastructure is capable of reducing carbon emissions from high computation needs of the

task/resource allocation for mobile units as well as saving cost and decreasing latency for

wide-scale VM infrastructure.

The ECM mechanism is capable of reducing the cost and latency extensively; however, it

consists of two important factors:

1. Placement: The inability to place the tasks in the best-suited edge computing device

during D2D offloading, this is crucial as without appropriate placement the tasks could

witness high latency and a generic decrease in bandwidth. Moreover, the proper

utilization of ECM devices is ensured by appropriate placement algorithms.

2. Migration: Further with the low-scale computational issues, starvation from the

processes aligned across for offloading is a normalized phenomenon to reduce the

inherent cloudlet or process starvation. Thus, a need for continuous migration is

essential.

The presented study utilizes the Edge SimPy simulation network for the technique

utilization and formulation of placement and migration algorithms. The study therefore

proposes three things:

1. The formulation of a priority-based multi-core heap structure to prioritize the cloudlets

based on task/resource allocation that allow a reduction of latency and increased

bandwidth.

2. An objective function toward the use of both the cloudlets and edge server where the

most optimal task or cloudlet is allocated to the edge server which can just match the

requirements; thus, resource utilization is maximized.

3. The need to introduce parallel computation using threads and multi-latent systems to

reduce process starvation in collaboration with the migration algorithm.

11.2 Literature Review

Mobile edge computing (MEC) technique about cloudlet offloading offers to overcome

issues of high computational needs by mobile applications and enhance the storage for low

latency and quick response application-centric designs. However, the real-time offloading

poses a challenge toward placement and migration of systems cloudlet across edge

resources. To overcome this challenge, various research studies have advocated the use of

deep learning algorithms to improve the offloading process in MEC networks. The solutions

can be broadly categorized into two paradigms: intelligent offloading mechanism discussed

in section 2.1 and task or cloudlet offloading using deep reinforcement learning discussed

in Section 2.3.

11.2.1 Mobile Devices and Its Limitations

The primary challenge to real-time offloading MEC as discussed by Alghamdi et al. (2021)

[17] is the computation deficit within mobile networks for offloading MEC. Cardellini et al.

(2016) [18] propose a game theory solution to offload D2D cloudlets with central cloud and

MEC architecture. Patel et al. (2015) [19] emphasize network congestion and the use of

MEC as a key technocratic use toward 5G systems as it allows faster network flow and

could lead to network drops reducing congestion. This is critical as without adequate

placement the tasks might observe excessive latency and an overall drop in bandwidth.

Moreover, the effective usage of ECM devices is assured by suitable placement algorithms.

The low computational capabilities lead to fewer resources for utilization to fulfill each

process, which in turn creates process starvation, leading to high latency, high data

transfer, and low bandwidth. This is due to low-scale computing resources and process

starvation caused by the offloading of the cloudlet process. Thus, a requirement for

ongoing migration is needed.

The necessity of transforming data with the help of computation requires high-end

server with cloud computing capabilities. The research discussed above showcases the

absence of high computation and storage capacity solutions to offload cloudlet tasks (RG1).

11.2.2 Intelligent Offloading Mechanism

Xu et al. (2018) propose a deep neural mix of convolution and recurrent neural networks to

create a hybrid deep reinforcement algorithm for an intelligent offloading system. The

convolutional recurrent neural network (CRNN) is used for offloading process in MEC

networks. The proposed techniques offer a 25% lower energy use case in comparison to

traditional offloading algorithms.

Yu et al. (2022) [10] address the delay in computing resources and high latency

constraints for MEC. They propose a Duel Deep Q network to optimize the scheduling of

resource allocation for a multiuser, multicluster, and multi-tenant environment. They

further propose an energy-efficient, loss-specific optimization algorithm that reduces

energy use by 11.54% and 20.83%, respectively, for D2D and generic cloud scenarios.

Furthermore, Vaiswan et al. (2016) [11] propose a solution for the binary system increased

latency and decreased bandwidth problem. The study discusses the pitfalls of the existing

Monte Carlo distribution method and proposes stochastic enumeration using decision tree-

based cost optimization, offering an intelligent pursuit to effective sampling and placement

of jobs based on computing resource parameters.

The above research showcases a significant research gap toward the concerns of

congestion packet loss, process starvation, transport security, and latency threats (RG2,

refers to Section 11.2.3.1).

11.2.3 Cloudlet Offloading to Edge Cloud Networks Using Deep

Reinforcement Learning

Xuzehu et al. (2021) [12] propose an intelligent deep reinforcement learning (DRL) method

for resource allocation toward cloudlet offloading for D2D. This study investigates the

resource allocation issue that occurs during the offloading process. The MEC-oriented real-

time system are energy-aware offloading system when considering the battery capacity of

the data center. The paper showcases energy savings, close to 104 × 104 Joules. The study

is nuanced over the MATLAB platform for the execution of the technique, providing a deep

weighted parameter for values 0.2, 0.4, 0.6, 0.8, and 1.0. The study offers an offloading

strategy for optimization, it takes the shortest latency and the cheapest computing cost as

the optimization aim and then applies Q-learning to solve the problem.

Similarly, Ullah et al. (2023) [13] studied edge computing for offloading from centralized

cloud servers to D2D devices. It proposes a DRL algorithm for offloading cloudlets based on

available computation resources and device location. The study uses the Markov decision

process to model the problem of latency and bandwidth in the underlying centralized cloud

server system. The study proposed DDQEC, a Q learning-based edge computing resource

allocation algorithm using DRL.

The study by Mourita Mozib et al. (2023) [14] works forth to increase the computation

capabilities for mobile applications, high bandwidth and low latency. The paper identifies

that MEC offloading requires optimization of offloading decisions in real-time scenario. To

achieve the desired goal the paper leverages the attribute of function from computation

from edge computing networks. The distributed deep learning-based system for real-time

offloading in MEC networks has tremendous potential to improve performance, scalability,

and efficiency. The technique achieves a reduced energy utility of up to 40% and a 60%

increase in latency across different simulations.

The critical concern that arises from the discussion of the above paper is that there is an

apparent need to create a priority-based system capable of reducing network flow,

enhancing bandwidth, and reducing latency. The current research uses a simplistic process

to offload cloudlets leading to process starvation, and high latency, thus requiring high

computation and storage capacity solutions to offload cloudlet tasks (RG1, refers to Section

11.2.3.1).

11.2.3.1 Research Gaps

RG1: Need for high computation and storage capacity solution to offload cloudlet tasks

from mobile applications that have low processing power and battery life to support

such high computational need.

RG2: MEC network works extensively on wireless devices; thus, congestion packet loss,

transport security, and latency threats are quite common in this domain. Thus,

centralized cloud systems often tend to cause significant obstruction to service or the

quality of offerings. Therefore, the use of edge computing for cloudlet remediation is

essential.

RG3: In the context of RQ1 and RQ2, it’s important to formulate a placement and

migration algorithm capable of effectively reducing energy need, latency, and

increasing bandwidth on ECM processes.

11.3 Methodology

The methodology describes the simulation pipeline followed throughout the study. It delves

into the use case of various physical layer attributes in Section 11.3.1. In Section 11.3.2 we

describe the use case and the ability of the placement and migration algorithm. Section

11.3.3 describes the proposed hybrid min heap queue placement creator. Figure 11.1

describes the high-level overview of the functionalities of the proposed Edge SimPy

simulation. It consists of a variety of steps from the availability of simulation 1 and

simulation 2, which is passed onto the simulator with the initializer path. It creates

monitoring components such as the Edge Server, Network Switch, Base Station, and User

data. The figure further showcases the placement and migration algorithms with

experimental arbitrary parameters a and b, where a can take values between 1, 2, 3 and b

converges over 100, 200, 300. In the final stage, monitoring analyzes various data and

metrics across the network flow.

https://calibre-pdf-anchor.a/#a1184

Figure 11.1 High-level diagram.⏎

11.3.1 Physical Layer and Attributes

The physical layer pertains abstraction necessary for maintaining users and resources

defined below. Each component is provided with a piece of unique geospatial information

which helps in locating and creating a two-dimensional map of the same. Especially

attributes of edge server and base station.

11.3.1.1 Base Station

Base station is an integral and inherent component placed within the EdgeSimPy simulation

orchestration. It acts as a service platform allowing the users and edge servers to

communicate via wireless communication using Transmission Control Protocol (TCP). It is

typically expected to cover the entire map arena allowing the users to stay connected at all

locations and geospatial coordinates of the mapping. It is responsible for capturing

energy/power-based inputs and wireless latency of the orchestration grid. Further, it

involves the presence of network switches and edge servers. Network switches are

essential for wired connectivity with the users, whereas edge servers allow cloudlet

offloading or hosting abilities for the orchestration to perform smoothly.

11.3.1.2 Network Switches

Network switches act as a traffic flow originator. It provides wired connectivity for hosting

infrastructure components and managing flow. It consists of ports, delays, clocks,

bandwidth, etc. The network switch utilizes the placement algorithm. It will use the hybrid

proposed algorithm to place the cloudlets on the edge cloud orchestration and computation

servers. It secures and protects the data transfer, network flow, and user requests as per

QoS policies.

11.3.1.3 Edge Servers

Edge servers are scaled orchestration devices available for cloudlet offloading and

computational adaptation. Each edge server consists of CPU cores, RAM, disk space, and

MIPS (Million of instructions per seconds) performance is responsible for scaling and

processing cloudlet offloading and co-hosted application runtime. It allows round-robin

processing of each cloudlet in the given time frames and onboards the highest priority of

the cloudlet first. Further to save power consumption which inherently affects the latency

of the node, it encompasses with decision to shut down the server to reduce power

utilization.

11.3.1.4 Users

Users are defined as client machines that offload tasks to the edge servers using the

network switches. Users consist of geospatial information, which is the coordinate of the

originating request, and the user class defines delay in response from the edge servers,

starvation of cloudlet, etc. Further, the user access pattern creates a cloudlet to be

offloaded to the edge servers. The mobility pattern recognizes random pathways for the

users.

11.3.1.5 Simulation Framework

To achieve the simulation of edge server cloudlet offloading, this study reviews various

possible scenarios to compare the algorithms proposed. It utilizes a Python-based

framework to develop the algorithm rather than creating a new simulation architecture in

the interest of time and computation necessary for testing. The simulation framework

adopted for this study is EdgeSimPy. It is a Python-based edge server simulation framework

architecture that allows the simulation to be aided with pre-existing simulation data sets

consisting of base stations, network switches, edge servers, and users. The simulation aids

in the monitoring of data flow, resource utilization, bandwidth of the edge servers, and

other parameters for comparison of the placement algorithm. SimPy which is an abstract

class over EdgeSimPy is a generic tool based on Python for simulation of different

parameters. It is generally used for resource utilization simulation and EdgeSimPy is a

specific use case of SimPy for edge server and cloudlet offloading scenarios.

11.3.2 Continuous Integration of Resource Allocation (CIRA)

CIRA ensures that the processes are optimally offloaded onto the edge servers. The D2D

and cloudlet offloading are synchronized for the cloudlet to utilize maximum resources,

thus ensuring the absence of underutilization of resources. CIRA is also responsible for

reducing starvation for processes within an edge server orchestration setup.

11.3.2.1 Network Architecture

The network architecture utilizes the physical layer and attributes, namely, base stations,

network switches, edge servers, users, and simulation framework to create a flow

architecture diagram. It allows two workflows, each consisting of services or cloudlets for

offloading. Figure 11.2 describes the architectural setup of the complete orchestration. It

connects the ES instances, that is, the edge servers, S1, S2, S3, that is, the services using

the network switches (L1, L2, L3,… L8). The CIRA is divided into two segments, namely,

placement and migration algorithms.

https://calibre-pdf-anchor.a/#a1197

Figure 11.2 Network architecture diagram.⏎

11.3.2.2 Placement Algorithm

The EdgeSimPy framework is built with the resource allocation system mechanism

consisting of multiple units. The placement algorithm is the rudimentary backbone of the

resource allocation unit as it is responsible for placing the cloudlets from the respective

user requests to the edge servers with the help of the network switches in transit. It is

essential in optimizing the performance and resource utilization of the edge servers and

orchestration as a whole. The placement algorithm is based on cloudlets described in

Equation 11.1, edge servers described in Equation 11.2, where Rci defines the resource of

services i, Cej defines the capacity of edge servers, and Lci,ej defines the latency in

between.

(11.1)

(11.2)

(11.3)

(11.4)

Equation 11.3 defines the minimum capacity needed for each service defined by Xij.

Equation 11.4 defines that each service must be placed only on one edge server to prevent

any redundant tasks.

11.3.2.3 Migration Algorithm

The migration algorithm allows continuous integration of Equations 11.3 and 11.4 by re-

evaluating starvation parameter and combines the possibility of task computation based on

the dynamic mappings available and rebalances the load on each edge server; in simpler

terms, it can be viewed as a rebalancing agent and the placement algorithm can be

demonstrated as a load balancing unit. Placement algorithm is necessary for load

distribution in the inception of task allocation. However, the migration technique is a

constant running service that rebalances as and when needed.

The migration algorithm ensures continuous integration and continuous processing for

the cloudlets offloaded to the edge servers. It does so by optimizing the time benefits. The

migration algorithm is an optimization technique that tries to minimize Equation 11.5.

(11.5)

Equation 11.5 describes the optimization function with or the migration cost of moving

cloudlet i to edge server J, and is the starvation parameter.

(11.6)

Equation 11.6 describes the global cloudlet offloading parameter which should always be 1,

as each cloudlet must be placed at an edge server.

(11.7)

Equation 11.7 defines that within the EdgeSimPy simulation mechanism, the migration

strategies allow seamless transition of cloudlets between edge servers which is essential

for service continuity while enabling continuous integration and continuous processing.

11.3.3 Edge Priority Placement Using Multi-Core and Parallel Heap

Structures (EP-MCPHS)

EP-MCHPS combines multi-latent processing to benefit from the degeneracy minimum

optimization unit of the heap function. The algorithm is divided into three segments:

Parallel heap creation (PhC), Provisioning, and PhC combination with parallel processing.

11.3.3.1 Parallel Heap Creation for Priority-Based Resource Allocation

A priority queue is utilized as a provisioning mechanism for the minimum optimizing which

implements a minimum heap to allow the least possible resource to be allocated to the

cloudlet, ensuring the least wastage of resources. The PhC algorithm uses Equation 11.8.

The heap used is a min heap for the edge server section based on the cloudlet

computational resource needs.

(11.8)

Equation 11.8 describes the heap function which is responsible for priority-based

distinction of resource allocation. The function notes the minimum required edge server

that can successfully offload the cloudlet. This allows the edge servers to be optimized, the

resource utilization to be maximized, and the migration flow rate of data to be low as the

edge servers would be working at maximum capacity in comparison to the MinMax fairness

algorithm. Thus, the priority-based allocation not only reduces latency, and data flow rate,

and maximizes resource optimization and bandwidth, it also caters to creating a high

operational edge server unit that can cater to on-demand service requests based on

resource priority task allocation.

11.3.3.2 Provisioning

The provisioning algorithm verifies the ability of an edge server to cater to the cloudlet that

is being sent. It compares the

(11.9)

which in turn creates the function given by Equation 11.10. These functions help compare

the parameters given by the CPU or, RAM or, and disk space.

(11.10)

11.3.3.3 PhC Combination with Multi-Core Parallel Processing

Parallel processing allows the PhC to compute faster and more optimally. Equation 11.11

presents the parallel threads set available.

(11.11)

Equation 11.12 showcases how each thread operates on a different cloudlet where is a

partition of cloudlets C.

(11.12)

The time complexity of PhC combination with parallel processing is given by Equation

11.13

(11.13)

The proposed algorithm optimizes the placement algorithm by reducing the starvation of

unused resources by using a Min heap with resource optimization. Further on, it

encompasses a parallel processing domain for the reduction of time computation, enabling

fast retrieval of cloudlets into edge computing processing via degeneracy pipelines.

The multi-core parallel heap structure divides the unit of resources into smaller units and

aims to fulfill as many as possible cloudlets in a single unit of time, whereas the heap

emphasizes allowing a resource-based priority entry to the pipeline. It ensures that the

process starvation of the cloudlet is reduced as it also has the migration technique to

remap the starving cloudlets. The multi-core parallel processing caters to priority-based

resource allocation as well as an automatic reduction in the starvation of cloudlets.

The proposed EP-MCPHS promises to reduce latency, and time spent to start processing,

and enhance faster traffic flow based on the ability of a heap-based processing speeding

system.

Algorithm 11.1 presents the algorithmic design of our placement algorithm.

ALGORITHM 11.1  EP-MCPHS

class EdgeServerWrapper: def init (self, edge_server): self.edge_server =

edge_server

def __lt__(self, other):

Compare edge servers based on their combined available resources (CPU,

memory, disk) return (self.edge_server.cpu, self.edge_server.memory,

self.edge_server.disk) < \ (other.edge_server.cpu, other.edge_server.memory,

other.edge_server.disk)

def provision_service(service, edge_server_heap): while edge_server_heap:

try:

edge_server_wrapper = heapq.heappop(edge_server_heap) edge_server =

edge_server_wrapper.edge_server

if edge_server.has_capacity_to_host(service=service):

service.provision(target_server=edge_server)

logging.info(f“Service {service.id} provisioned on edge server {edge_server.id}”)

return True except Exception as e: logging.error(f”Error provisioning service

{service.id} on edge server {edge_server.id}: {e}”) logging.warning(f”No suitable

edge server found for service {service.id}”) return False

def my_algorithm(parameters):

services = [service for service in Service.all() if service.server is None and not

service.being_provisioned] edge_servers = [EdgeServerWrapper(edge_server) for

edge_server in EdgeServer.all()] heapq.heapify(edge_servers)

with ThreadPoolExecutor(max_workers=10) as executor:

futures = [executor.submit(provision_service, service, edge_servers) for service in

services]

for future in futures: try:

future.result() except Exception as e: logging.error(f“Error in provisioning process:

{e}”)

11.3.4 Testing and Evaluation Framework

This study makes a comparative analysis between the proposed EP-MCPHS and the Min-

max fairness algorithm (MMFA). The MMFA was proposed in the base paper version of

EdgeSimPy architecture. The study performs an in-depth analysis of the bandwidth,

latency, resource utilization, and data flow rate across both techniques. The study further

compares the mean and standard deviation under statistical analysis to showcase the

evaluation of the EP-MCPHS architecture to the baseline MMFA. The study provides a

detailed discussion of how the reduction in data transfer and enhanced latency are the

output of the incorporated minheap-based task priority system. It also compares the results

in the upcoming section under the bar plots and statistical analysis cycles. It also creates a

simulation parameter comparison for intervals of 5, 10, 15, and 20-second cycles

showcasing the sturdity of the architecture across increasing time ranges and upcoming

cloudlets.

11.4 Results and Discussion

11.4.1 Evaluation Metrics

In this study, we primarily compare the results among Start, End, Actual bandwidth and

Data transfer. Let’s discuss in detail on the meaning and utilization of these.

Start and End time showcases the actual lapse of time to process the cloudlets. The

edge server tries to minimize the difference between these as much as possible. The actual

bandwidth refers to the potential to cater to more services, which should be as high as

possible. This also showcases the low latency of the edge servers. Finally, the data flow is a

paramount effect of having the most optimal cloudlet being placed allowing for low data

flow, accommodating high bandwidth and low latency for the algorithm.

11.4.2 Edge Servers

Edge server details showcase the instances, coordinates, CPU demand, RAM demand, disk

demand, and services (Table 11.1). These will be used for the below-mentioned

simulations.

Table 11.1 Edge Server Details⏎

TimeStep

Instance

ID Coordinates

CPU

Demand

RAM

Demand

Disk

Demand Services

0 1 [0, 0] 0 0 0 []

0 2 [0, 2] 0 0 0 []

0 3 [6, 0] 0 0 0 []

0 4 [1, 3] 0 0 0 []

0 5 [7, 1] 1 1024 1017 []

0 6 [6, 2] 0 0 0 []

1 1 [0, 0] 6 12288 82 []

1 2 [0, 2] 0 0 0 []

1 3 [6, 0] 0 0 0 []

1 4 [1, 3] 0 0 0 []

1 5 [7, 1] 1 1024 1017 []

1 6 [6, 2] 0 0 0 []

2 1 [0, 0] 6 12288 82 [1, 2]

2 2 [0, 2] 0 0 0 []

2 3 [6, 0] 0 0 0 []

2 4 [1, 3] 0 0 0 []

2 5 [7, 1] 1 1024 1017 []

2 6 [6, 2] 0 0 0 []

3 1 [0, 0] 6 12288 82 [1, 2]

3 2 [0, 2] 0 0 0 []

3 3 [6, 0] 0 0 0 []

3 4 [1, 3] 0 0 0 []

3 5 [7, 1] 1 1024 1017 []

3 6 [6, 2] 0 0 0 []

4 1 [0, 0] 6 12288 82 [1, 2]

TimeStep

Instance

ID Coordinates

CPU

Demand

RAM

Demand

Disk

Demand Services

4 2 [0, 2] 0 0 0 []

4 3 [6, 0] 0 0 0 []

4 4 [1, 3] 0 0 0 []

4 5 [7, 1] 1 1024 1017 []

4 6 [6, 2] 0 0 0 []

5 1 [0, 0] 6 12288 82 [1, 2]

5 2 [0, 2] 0 0 0 []

5 3 [6, 0] 0 0 0 []

5 4 [1, 3] 0 0 0 []

5 5 [7, 1] 1 1024 1017 []

5 6 [6, 2] 0 0 0 []

6 1 [0, 0] 6 12288 82 [1, 2]

6 2 [0, 2] 0 0 0 []

6 3 [6, 0] 0 0 0 []

6 4 [1, 3] 0 0 0 []

6 5 [7, 1] 1 1024 1017 []

6 6 [6, 2] 0 0 0 []

7 1 [0, 0] 6 12288 82 [1, 2]

7 2 [0, 2] 0 0 0 []

7 3 [6, 0] 0 0 0 []

7 4 [1, 3] 0 0 0 []

7 5 [7, 1] 1 1024 1017 []

7 6 [6, 2] 0 0 0 []

8 1 [0, 0] 6 12288 82 [1, 2, 3, 4, 5,

6]

8 2 [0, 2] 0 0 0 []

8 3 [6, 0] 0 0 0 []

8 4 [1, 3] 0 0 0 []

8 5 [7, 1] 1 1024 1017 []

8 6 [6, 2] 0 0 0 []

11.4.3 Simulation Results

This section presents the results obtained by the comparison of simulation dataset 2 (Table

11.2). User data with the statistical measures of count, mean, standard deviation,

minimum, 25% quartile, 50% quartile, 75% quartile, and maximum, these are calculated

across time steps and instance ID.

Table 11.2 User Data⏎

StatisticalMeasure Time Step Instance ID

count 54 54

StatisticalMeasure Time Step Instance ID

mean 4 3.5

std 2.60623 1.72386

min 0 1

25% 2 2

50% 4 3.5

75% 6 5

max 8 6

Network flow using first come first serve showcases the statistical measures across time

stamp, instance ID, start, end time, source, target, bandwidth, and data transfer rate (Table

11.3).

Table 11.3 Network Flow Using Max-Min Fairness Algorithm⏎

Statistical

Measure Time Step

Instance

ID Start End Source Target

Actual

Bandwidth

Data

Trans

count 31.000000 31.000000 31.000000 15.000000 31.0 31.0 31.000000 31.00

mean 4.612903 2.451613 1.225806 3.600000 5.0 1.0 3.811828 6.532

std 2.275631 1.120676 0.425024 2.898275 0.0 0.0 1.511640 8.10

min 1.000000 1.000000 1.000000 1.000000 5.0 1.0 2.000000 0.000

25% 3.000000 1.500000 1.000000 1.000000 5.0 1.0 2.041667 0.000

50% 5.000000 2.000000 1.000000 1.000000 5.0 1.0 4.166667 1.875

75% 6.500000 3.000000 1.000000 6.500000 5.0 1.0 4.687500 12.8

max 8.000000 4.000000 2.000000 7.000000 5.0 1.0 6.250000 23.75

Similarly in Table 11.4 EP-MCPHS network flow showcases the network route changes in

bandwidth, timestamp, and data transfer.

Table 11.4 EP-MCPHS Network Flow⏎

Time Step

Instance

ID Start End Source Target

Actual

Bandwidth

Data to

Transfer

count 42.000000 42.000000 42.0 26.000000 42.0 42.000000 42.000000 42.000000

mean 3.500000 4.000000 1.0 2.615385 5.0 2.714286 6.428571 4.916667

std 1.728527 2.024243 0.0 1.626700 0.0 1.686181 3.857320 7.548959

min 1.000000 1.000000 1.0 1.000000 5.0 1.000000 2.000000 0.000000

25% 2.000000 2.000000 1.0 1.000000 5.0 1.000000 2.000000 0.000000

50% 3.500000 4.000000 1.0 3.000000 5.0 2.000000 6.250000 0.000000

75% 5.000000 6.000000 1.0 4.000000 5.0 4.000000 6.250000 10.000000

max 6.000000 7.000000 1.0 5.000000 5.0 6.000000 12.500000 23.750000

Table 11.5 Comparison of EP-MCPHS and Max-Min Fairness⏎

Algorithm

Statistical

Analysis Start End

Actual

Bandwidth

Data to

Transfer

Algorithm

Statistical

Analysis Start End

Actual

Bandwidth

Data to

Transfer

EP-MCPHS

mean 1.0 2.615385 6.428571 4.916667

std 0.0 1.626700 3.857320 7.548959

25% 1.0 1.000000 2.000000 0.000000

50% 1.0 3.000000 6.250000 0.000000

75% 1.0 4.000000 6.250000 10.000000

Max-Min

Algorithm

Fairness mean 1.225806 3.600000 3.811828 6.532258

std 0.425024 2.898275 1.511640 8.107522

25% 1.0 1.000000 2.041667 0.000000

50% 1.0 3.000000 4.166667 1.875000

75% 1.0 4.000000 4.687500 12.875000

Table 11.5 makes a comparison of EP-MCPHS and MMFA, showcasing that the proposed

hybridized placement algorithm presents lower start time statistics across mean, standard

deviation, 25%, 50%, and 75% scores. Similarly, the end time is reduced to 2.615 in

comparison to 3.6 seconds earlier. Further, the placement algorithm has a standard

deviation of 0, meaning that most algorithms are placed in the first unit of time during

simulation. The utility of EPMCPHS algorithm is the increase in bandwidth from 3.811828 in

MMFA to 6.428571. The algorithm also reduces the inherent data transfer rate as the most

optimal task in case of resources is running on the top edge server. Henceforth, smaller

tasks need to be migrated. This is showcased by the parameter 4.91 mean in comparison

to MMFA 6.53, as well as the standard deviation of 7.54 during EP-MCPHS 8.10.

Figure 11.3 makes a comparison between EP-MCHS and MMFA, showing the start, end,

actual bandwidth, and data to transfer for the two algorithms. The figure also shows

improvement in the mean of start, end, and data transfer wherein increase of data to

transfer from 6.53 to 4.91 on EP-MCHS.

https://calibre-pdf-anchor.a/#a1243

Figure 11.3 Comparison between EP-MCHS and max-min fairness algorithm.⏎

Table 11.6 Simulation Analysis across Time Interval⏎

Interval Statistical Analysis Start End Actual Bandwidth Data to Transfer

5

Mean 1.0 2.615385 6.428571 4.916667

Standard Deviation 0.0 1.626700 3.857320 7.548959

10

Mean 1.00087 2.615 6.428578 4.916667

Standard Deviation 0.0715 1.62686 3.857320 7.548959

15 Mean 1.000081 2.6185 6.428561 4.916667

Standard Deviation 0.00006 1.62579 3.857320 7.548959

20 Mean 1.000094 2.6159 6.428577 4.916667

Standard Deviation 0.00051 1.626709 3.857320 7.548959

Table 11.6 presents simulation analysis across time intervals and Figure 11.4 showcases

the meager change in the start, end, bandwidth, and data to transfer values within the

framework of simulation across time intervals.

https://calibre-pdf-anchor.a/#a1247

Figure 11.4 Simulation analysis across interval time.⏎

11.5 Conclusion

The concept of edge computing is gaining popularity as a paradigm that may provide

applications with minimal latency by moving processing from typical cloud data centers to

the periphery of the network. To ensure that edge computing goes from being a promise to

a reality, it is necessary to create effective approaches for resource management. This is

because expectations about the potential advantages of edge computing are growing

significantly. The need for today’s day and age mobile applications to be onboarded with

applications needing, high computation, low latency, high bandwidth, etc. This leads to a

scenario wherein the fast age computation is needed, and a general cloud server with high

latency cannot cater to the needs of such high demands. Thus, to mitigate this edge

computing resources are selected. In this study, the proposition of EP-MCPHS allows the

use of minimum heap with multi-processing techniques to reduce the workload from the

unutilized edge servers, enhance resource utilization, reduce latency, and increase

bandwidth to cater the service request. This follows when the effective flow rate of the

network drops as per our experiments in Section 11.4.3. This is because the current

effective resources are allocated to the most optimal process leading to low data transfer in

the network, thus further leading to a low latency and high bandwidth model. The final

comparison with the first come first serve model architecture and the reduction of time

interval-based cross-validation showcases the superiority of the modeling architecture of

EP-MCPHS over other current state-of-the-art techniques for placement of cloudlet in edge

servers. The algorithm also enhances the need for fast cloudlet offloading for high-demand

mobile applications, thus catering to the D2D offloading with cloudlet-to-edge server

mapping as well. It increases the bandwidth from 3.811828 to 6.428571 in the MMFA. The

algorithm also reduces the inherent data transfer rate to 4.91 for EPMCPHS in comparison

to 6.53 for MMFA.

11.5.1 Future Scope

This study aims to create a dynamic algorithm capable of managing the load, reducing

latency, increasing bandwidth, and decreasing network flow for cloudlet offloading into

edge server simulation. The chapter uses EdgeSimPy simulation to achieve the nuances

described.

The future scope of this research can be showcased by the enhancement of DRL

mechanisms wherein a neural simulation for the architecture can be drawn and tested via

neural agents. The simulation could allow to adopt to reduce latency and resource

utilization. This would also allow for a nonparametric algorithm that could replace the

current parameterized setup and create global loss functions for the calculation of

algorithm fitness like the studies for feature selection.

References

1.Roman, R., Lopez, J., Mambo, M. (2018). Mobile edge computing, fog et al.: A survey and

analysis of security threats and challenges. Future Generation Computer Systems, 78,

680–698.

2.Shahzadi, S., Iqbal, M., Dagiuklas, T., Qayyum, Z. U. (2017). Multi-access edge

computing: Open issues, challenges and future perspectives. Journal of Cloud

Computing, 6, 1–13.

3.Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K. B. (2017). A survey on mobile edge

computing: The communication perspective. IEEE Communications Surveys & Tutorials,

19, 2322–2358.

4.Satyanarayanan, M., Klas, G., Silva, M., Mangiante, S. (2019). The seminal role of edge-

native applications. In 2019 IEEE International Conference on Edge Computing, IEEE, pp.

33–40.

5.Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N. (2009). The case for VM-based

cloudlets in mobile computing. IEEE Pervasive Computing, 8, 14–23.

6.Zhao, H., Deng, S., Liu, Z., Yin, J., Dustdar, S. (2020). Distributed redundancy scheduling

for microservice-based applications at the edge. IEEE Transactions on Services

Computing, 15(3), 1732–1745.

7.Wang, J., Feng, Z., George, S., Iyengar, R., Pillai, P., Satyanarayanan, M. (2019). 1130

Towards scalable edgenative applications. In ACM/IEEE Symposium on Edge Computing,

pp. 152–165.

8.Souza, P., Crestani, A., Ferreto, T., Rossi, F. (2022). Latency-aware privacypreserving

service migration in federated edges. In International Conference on Cloud Computing

and Services Science, pp. 288–295.

9.Souza, P., Ferreto, T., Rossi, F., Calheiros, R. (2022). Location-aware maintenance

strategies for edge computing infrastructures. IEEE Communications Letters, 26, 848–

852.

10.Yu, Z., Xu, X., Zhou, W. (2022). Task offloading and resource allocation strategy based

on deep learning for mobile edge computing. Computational Intelligence and

Neuroscience, 2022, 1–11. https://doi.org/10.1155/2022/1427219(Not accessible as of

[2025/07/18])⏎

https://doi.org/10.1155/2022/1427219

11.Vaisman, R., Kroese, D. P., Gertsbakh, I. B. (2016). Improved sampling plans for

combinatorial invariants of coherent systems. IEEE Transactions on Reliability, 65(1),

410–424. https://doi.org/10.1109/tr.2015.2446471⏎

12.Li, X. (2021). A computing offloading resource allocation scheme using deep

reinforcement learning in mobile edge computing systems. Journal of Grid Computing,

19(3). https://doi.org/10.1007/s10723-021-09568-w⏎

13.Ullah, I., Lim, H.-K., Seok, Y.-J., Han, Y.-H. (2023). Optimizing task offloading and

resource allocation in edge-cloud networks: A DRL approach. Journal of Cloud Computing,

12(1). https://doi.org/10.1186/s13677-023-00461-3⏎

14.Mozib, M. (2023). Distributed deep learning based framework to optimize real-time

offloading in mobile edge computing networks. International Journal of Science and

Research, 12(6), 1812–1827. https://doi.org/10.21275/sr23603125305⏎

15.Yang, H., Xu, C., Liu, S., Zhang, J. (2020). A privacy-preserving task offloading scheme

for edge computing in the Internet of Things. IEEE Internet of Things Journal, 7(7), 6124–

6136.

16.Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M. (2015). Internet of

Things: A survey on enabling technologies, protocols, and applications. IEEE

Communications Surveys & Tutorials, 17(4), 2347–2376.

17.Alghamdi, I. (2021). Computation offloading in mobile edge computing: An optimal

stopping theory approach. PhD thesis, University of Glasgow.⏎

18.Cardellini, V., De Nitto Person´e, V., Di Valerio, V., Facchinei, F., Grassi, V., Lo Presti, F.,

Piccialli, V. (2016). A game-theoretic approach to computation offloading in mobile cloud

computing. Mathematical Programming, 157, 421–449.⏎

19.Patel, M., Sabella, D., Sprecher, N., Young, V. (2015). Mobile edge computing—a key

technology towards 5g. ETSI White Paper, 11(11), 1–16.⏎

20.Alfakih, T., Hassan, M. M., Gumaei, A., Savaglio, C., Fortino, G. (2020). Task offloading

and resource al location for mobile edge computing by deep reinforcement learning

based on sarsa. IEEE Access, 8, 54074–54084.

21.Mao, Y., Zhang, J., Song, S. H., Letaief, K. B. (2017). Stochastic joint radio and

computational resource management for multi-user mobile-edge computing systems.

IEEE Transactions on Wireless Communications, 16(9), 5994–6009.

22.Trinta, F. A., Hasan, M. Z., de Souza, J. N., et al. (2019). Enhancing offloading systems

with smart decisions, adaptive monitoring, and mobility support. In Wireless

Communications and Mobile Computing 2019.

23.Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N. (2009). The case for vm-based

cloudlets in mobile computing. IEEE Pervasive Computing, 8(4), 14–23.

24.Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., Wang, W. (2017). A survey on mobile

edge networks: Convergence of computing, caching and communications. IEEE Access,

5, 6757–6779.

25.Zhang, K., Mao, Y., Leng, S., Zhao, Q., Li, L., Peng, X., Pan, L., Maharjan, S., Zhang, Y.

(2016). Energy-efficient offloading for mobile edge computing in 5g heterogeneous

networks. IEEE Access, 4, 5896–5907.

26.Souza, P. S., Ferreto, T., Calheiros, R. N. (2023). EdgeSimPy: Python-based modeling and

simulation of edge computing resource management policies. Future Generation

Computer Systems [online], 148, 446–459. https://doi.org/10.1016/j.future.2023.06.013

https://doi.org/10.1109/tr.2015.2446471
https://doi.org/10.1007/s10723-021-09568-w
https://doi.org/10.1186/s13677-023-00461-3
https://doi.org/10.21275/sr23603125305
https://doi.org/10.1016/j.future.2023.06.013

Index

A

Accuracy, 24, 43, 51, 57, 59, 60, 69, 87–89, 103, 105, 106,

108, 114, 121, 129–131, 133, 139, 141–144, 147, 150–

152, 154, 159, 161–163, 168, 209–211, 213, 215–217,

220–225, 228

Aggregate, 124, 208

AI, 31, 32, 44, 65, 86–88, 96, 99, 121, 132–137, 157, 166,

167, 205, 207, 208, 211, 226, 231–233, 253–255

AI/ML, 202

AI-based, 164, 178

Algorithm, 28, 30, 31, 34, 35, 37–44, 46, 47, 50, 51, 54, 59,

65, 71, 73, 79, 88, 113–115, 117, 119, 121, 123–127, 129,

131, 133, 135–139, 141, 143–145, 147, 149, 151, 153,

155, 157, 162, 166, 167, 171, 184, 188, 205, 209–215,

218, 219, 228, 231–242, 246, 247, 249, 250, 253

Allocation, 1, 3, 5, 8, 12, 15, 16, 18, 19, 21–26, 28–32, 36–

38, 40, 41, 43, 45, 46, 53, 56–60, 62, 64, 66, 108, 114,

136, 157, 171, 174, 176, 181–183, 185, 187, 188, 190,

192, 199, 203, 205, 227, 228, 230–233, 236–240, 254

Android, 161

Apache, 76

Architecture, 22, 36, 39, 40, 42, 49, 67, 70, 71, 73, 74, 76,

77, 79, 81–83, 87, 95–97, 100, 109, 114, 135, 142, 148,

166, 167, 179, 189, 204, 207, 211, 214, 218, 219, 222,

223, 226, 231, 236, 237, 242, 253

Autoencoder, 132, 137

AWS, 90, 93, 96, 99, 103, 230

Azure, 111, 230

B

Bayesian, 208, 226

BFV, 211, 220, 221

Biases, 141, 220–223

Blockchain, 26–28, 30, 63, 65, 67–73, 75, 76, 79, 81–83,

150, 155, 157, 169, 170

C

Cloud, 2–5, 7–12, 16, 21–26, 30–33, 36, 40, 44–49, 53, 56,

58, 61, 64–68, 70–73, 76, 79, 81, 82, 84–90, 95, 96, 102,

109–113, 130, 136, 148, 149, 153, 157–159, 165–169,

174–179, 182, 183, 186, 189–191, 193, 197, 198, 200–

203, 205, 213, 227–234, 246, 253, 254

Cloud-based, 39, 53, 70, 85

Cloud-edge, 44

Cloudlet, 229–243, 245, 247, 249, 251, 253, 255

CNN, 213, 214, 216, 217, 220–223, 225, 227

Conventional, 33, 37, 120, 121, 181, 193, 209, 216, 217

Covid, 222, 223

CPU, 12, 40, 42, 56, 57, 59, 62, 76, 176, 180, 181, 184–186,

188–190, 204, 234, 235, 239, 241–245

Credits, 27

Cryptocurrency, 27

D

DDQN, 38, 39, 41

Decentralized, 7, 8, 23, 24, 26–28, 30, 41, 46, 63, 67, 68,

71, 75, 79, 81, 116, 117, 120, 123, 124, 130, 132–135,

138, 139, 141, 148, 150, 151, 153, 155–157, 159, 160,

165, 175, 179, 200, 202, 204, 207, 210, 218–221, 225,

227

Decisions, 7, 19, 20, 35, 40–42, 44, 55, 56, 58–61, 70, 117,

165, 174, 175, 178, 180–182, 184, 188–191, 195–197,

201–204, 233, 255

DL, 37, 159, 161, 162, 164

DML, 166

DNN, 174, 181, 184, 203

Docker, 90, 91, 94, 96, 99, 101, 103

DRL, 34, 35, 37, 39–44, 174, 175, 179, 181–184, 188–204,

232, 233, 253, 254

DVFS, 13

E

EC2, 90, 91, 93, 94, 96, 99–101, 103

Edge-cloud, 23, 30, 254

Edges, 34, 254

Edge-scale, 230

EdgeSimPy, 234, 236–238, 242, 253, 255

Energy-efficient, 23, 192, 205, 255

Epochs, 142

Ethereum, 75

Ethical, 29, 63, 91, 216, 217

Evolution, 31, 45, 65, 129, 136, 157, 164, 205, 228

Exploration, 48, 133, 175, 180, 186, 188, 204

F

F1, 52, 60

Fault, 53, 55, 61, 79, 81, 82, 132–135, 147, 152, 153, 163,

167, 171, 201, 202, 210, 216, 217, 225, 227

Federated, 23–26, 30, 32, 37, 45, 63, 113–115, 117, 119–

127, 129–133, 135–137, 139–141, 143–148, 151, 152,

155–157, 160, 161, 165–171, 175, 179, 191, 200, 201,

203, 205, 206, 208–228, 254

FedSVM, 167, 168

Firewalls, 84, 86

FogChain, 76, 78, 82

Fog-edge, 69, 71, 73, 75, 77, 79, 81, 83

Forecasting, 21, 160, 168

Fuzzy, 82, 163, 164

G

GA, 43, 44, 129

Gateway, 32, 70, 148

Gaussian, 214, 220, 221

Geo, 38, 53

Geographic, 3, 10, 38, 49

Google, 227, 230

GPS, 197

GPU, 42, 176, 178, 185, 186, 188

Gradient, 36, 38, 50, 88, 131, 135, 143, 145, 166, 174, 181,

184–188, 204, 209, 210, 213, 214, 218–223

H

Healthcare, 1, 2, 6, 17, 18, 22, 24, 28, 29, 49, 56, 62, 65,

67, 70, 83, 116, 126, 140, 152–154, 160, 168, 177, 182,

189, 191, 192, 194, 197, 199, 200, 203, 204

Honeypot, 112

Hyperparameters, 52, 60, 142, 146, 213, 220, 221

I

ICU, 197, 199

IDS, 84–91, 93, 94, 96, 98–101, 108, 109, 112, 131

IIoT, 6, 18, 19, 120, 139, 149, 159, 176, 182, 204

Infrastructure, 2, 3, 16, 20, 22, 24–26, 28, 31, 32, 45, 54,

62, 65, 83, 87, 90, 91, 100, 110, 116, 130, 136, 153, 156,

157, 174, 178, 180, 202–205, 228–230, 234

Intrusion, 84, 110–112

IoT, 3, 5–11, 14, 15, 17, 21, 22, 25–29, 31–33, 36, 38, 48,

49, 56, 57, 62, 64, 65, 67–73, 76, 79, 81–91, 93–101, 103,

105, 107, 109, 111–114, 116, 117, 148, 149, 152, 156,

158–162, 166–168, 170, 176, 189, 193, 197–199, 204,

205, 222, 223

IP, 55, 79, 92, 100–102

K

KNN, 51, 60

L

Lambda, 99

Layer, 4, 5, 67, 71–73, 76, 79, 96, 126, 210, 213, 214, 233,

234, 236

Learning-based, 175, 177, 179, 181, 183, 185, 187, 189,

191, 193, 195, 197, 199, 201, 203, 205, 233

LMS, 222, 223

Loss, 59, 90, 124, 129, 130, 143, 146, 162, 232, 233, 253

M

Malicious, 88, 93, 107, 108, 111, 207, 208, 216, 217

Max-min, 247, 249

MDP, 36, 37, 39–43

Media, 75, 76

Median, 43

Methodological, 39

Migration, 40, 202, 203, 230–234, 237–239, 254

Mining, 9, 65

Min-min, 79

ML-driven, 63

MLSys, 135

MMFA, 242, 246, 253

Model, 9, 15, 22–24, 28, 29, 35–39, 41–44, 50–52, 57, 59–

61, 68–70, 72, 73, 76, 79, 80, 88, 94, 95, 98, 102, 103,

105–107, 109, 114, 120–126, 129–135, 138–157, 161–

168, 174, 175, 189–192, 195, 200, 201, 204, 206–227,

233, 253

MSE, 52, 60

Multi-task, 169

N

Nanotechnology, 110

Neural, 31, 32, 35–37, 40, 41, 45, 65, 121, 126, 135, 136,

149, 157, 166, 167, 174, 184, 187, 205, 207, 220–223,

228, 232, 253

NLP, 76

Normalization, 126, 136, 164, 213, 214, 223

NP, 40, 43

O

Objective, 11, 44, 63, 85, 91, 95, 107, 109, 124–126, 129,

130, 146, 185, 231

Offload, 8, 9, 23, 42, 176, 179, 182, 183, 193, 202, 231–

233, 236, 239

Optimization, 1, 3–5, 7–11, 13–17, 19–25, 27–31, 33, 36–46,

50, 58, 62, 63, 65, 66, 129, 130, 132, 133, 135, 136, 141,

146, 157, 161, 165–167, 170, 174, 175, 182, 185, 187,

190, 198, 199, 205, 214, 218, 219, 226–228, 232, 233,

238–240

Orchestration, 32, 234, 237

Overfitting, 52, 61, 98

Overloads, 15

P

Pattern, 65, 84, 102, 103, 136, 160, 166, 167, 236

PCA, 57

PDM, 113, 114, 116, 117, 120, 121, 132–135, 138, 139,

141–143, 147, 148, 150, 152, 155–157, 160, 162–165

Pie, 106

Pipeline, 23, 94, 95, 100, 102, 233, 240

Population, 43, 129

Port, 79, 92, 93, 95, 100–103, 107

PPO, 36, 37, 39, 43, 44, 174, 181, 188, 204

Prediction, 14, 28, 31, 40, 51, 57, 58, 62, 65, 89, 103, 114,

120, 142, 143, 146, 147, 153, 154, 156, 159, 163, 164,

167–171, 222, 223

Protocol, 16, 43, 76, 92, 98, 234

PSO, 38, 43, 129, 130

Python, 64, 65, 95, 236, 255

Q

Q-learning, 37, 42, 45, 46, 232

Q-net, 184

QoS, 2, 12, 36, 43, 63, 234

Quantum, 26, 28–30, 38

R

Recall, 51, 52, 57, 60, 105, 108, 150, 151

Regression, 50–52, 57, 59, 60, 149, 160, 166, 211

Reinforce, 255

Reliability, 2, 9, 10, 14, 15, 25, 28, 29, 50, 53, 61, 63, 64,

79, 99, 103, 104, 123, 132, 134, 139, 150, 154, 157, 163,

165, 176, 178, 179, 254

Remote, 3, 6, 12, 18, 25, 26, 49, 68, 69, 82, 141, 153, 176,

178, 179, 189, 192, 197, 199, 203, 230

RF, 87, 89, 90, 93, 95, 96, 98, 105, 108, 109

RFID, 21

RMS, 112

RMSE, 52

RNNS, 41

RSA, 69

Rule-based, 84, 87, 89–91, 96, 107, 109, 164

S

Scikit, 64

Segmentation, 213, 220, 221, 228

Semiconductor, 170

Sensitive, 1, 4, 7, 11, 14, 16, 22, 24, 26, 28, 30, 49, 52, 105,

106, 116, 121, 130, 133, 134, 139, 140, 152, 154, 157,

165, 182, 191, 200, 207–209, 214, 218–223, 225

Sensitivity, 40, 51, 177, 203

Sensors, 3, 6, 8, 9, 16–20, 48, 49, 68, 70, 93, 98, 111, 114,

116, 117, 120, 136, 138–142, 148, 152, 153, 162–164,

169–171, 176, 177, 193, 197–199, 202

SIEM, 84–90, 94–96, 98–102, 107–111

Skewed, 55

Slicing, 25

Software-defined, 88

Soil, 63, 193

Stack, 90, 94–96, 98, 112

Stock, 21, 50

Structure, 50, 68, 75, 92, 95, 98, 102, 231, 240

SVM, 51, 60, 149, 166, 167, 196

Swarm, 38, 43, 46, 129

Synergy, 165

T

Taxonomy, 64, 216, 217

TCP, 76, 92, 103, 234

TensorFlow, 57

Test, 52, 86–88, 121, 211

Timestamps, 91

Token, 79

Topologies, 167, 168

Training, 9, 15, 22–24, 26, 28, 30, 35, 37, 38, 40–43, 50–52,

57–61, 63, 92, 93, 106, 114, 120–126, 129–135, 139–146,

148–152, 154–157, 159–161, 166–168, 175, 183–186,

188–192, 195, 196, 200, 204, 207–211, 213–223, 228

Transaction, 21, 68

Tree, 50, 70, 87, 205

Trust, 26, 27, 49, 63, 68, 155, 185, 209

Trusted, 56, 73, 81, 209–211, 218, 219, 222, 223

Tuning, 57, 146, 156, 215, 218–223

Twin, 135, 163, 170

U

UAV, 42, 46, 171

Ubiquitous, 25, 169

Ubuntu, 100

Ultra, 25, 156, 192, 202, 204

Underutilization, 2, 236

Unsupervised, 160, 170

USA, 111

V

Virtualization, 79

VPC, 90, 93

W

Warehouse, 21, 199

Wireless, 10, 26, 30, 32, 65, 76, 82, 131, 158, 178, 233,

234, 255

Workflow, 35, 36, 38, 43, 45, 52, 142

Workload, 3, 5, 10, 12, 13, 15, 32, 36, 39, 42, 45, 48, 57,

62, 165, 174, 177, 179, 188, 189, 198–200, 204, 253

WSNS, 76

X

XGBoost, 88–90, 93, 95, 96, 98, 105, 106, 108, 109, 111

Xue, 47

Y

Yields, 159

	Cover
	Half-Title Page
	Title Page
	Copyright Page
	Table of Contents
	Editors
	Contributors
	Chapter 1 Introduction to Resource Optimization in Fog and Edge Computing
	1.1 Introduction
	1.2 Strategies for Resource Optimization
	1.3 Applications
	1.4 Resource Optimization in Fog and Edge Computing: A Detailed Overview
	1.5 Applications of Resource Optimization in Smart Cities
	1.6 Conclusion
	References

	Chapter 2 Artificial Intelligence Inspired Scheduling in Edge Computing
	2.1 Introduction
	2.2 Conclusion
	References

	Chapter 3 Supervised Machine Learning for Load Balancing in Fog Environments
	3.1 Introduction
	3.2 Fog Computing: An Overview
	3.3 Supervised Machine Learning (SML) Basics
	3.4 Challenges and Considerations
	3.5 Mathematical Formulations for Load Balancing
	3.6 Applications and Case Studies
	3.7 Challenges and Future Directions
	3.7.1 Challenges
	3.7.2 Future Research Directions

	3.8 Conclusion
	References

	Chapter 4 Blockchain-Based Secure Data Sharing System in Fog–Edge System
	4.1 Introduction
	4.2 Review of Literature
	4.3 Methodology
	4.4 Conclusion
	References

	Chapter 5 Securing IoT System Using ML Models
	5.1 Introduction
	5.2 Related Work
	5.2.1 SIEM, IDS and ML Models in Cybersecurity
	5.2.2 IoT Devices
	5.2.3 DDoS Detection Mechanisms
	5.2.4 Summary

	5.3 Research Methodology
	5.3.1 Research Design
	5.3.2 Data Collection
	5.3.3 Data Preprocessing
	5.3.4 Experimental Setup
	5.3.5 Detection Mechanism

	5.4 Design Specification
	5.4.1 Introduction to System Design
	5.4.2 Architectural Overview
	5.4.3 Justification for Selected Tools and Technologies
	5.4.4 Design Considerations and Constraints

	5.5 Implementation
	5.5.1 Infrastructure Setup
	5.5.2 Detailed Configurations

	5.6 Evaluation
	5.6.1 System Performance
	5.6.2 Classification Reports for the ML Models
	5.6.3 Distribution of Detected Events (ML Predictions)
	5.6.4 Detection over Time (Rule-Based Kibana Visualisation)
	5.6.5 Discussion

	5.7 Conclusion and Future Work
	5.7.1 Future Works

	References

	Chapter 6 Federated Machine Learning Algorithm Aggregation Strategy for Collaborative Predictive Maintenance
	6.1 Introduction
	6.1.1 Latency Issues
	6.1.2 Resource Constraints

	6.2 Federated Learning: A Paradigm for Collaborative Predictive Maintenance
	6.2.1 Overview of Predictive Maintenance
	6.2.2 Application of FL in PdM Offers Several Advantages

	6.3 Aggregation Strategies in Federated Learning
	6.3.1 The Foundational Aggregation Algorithm
	6.3.2 Advanced Aggregation Techniques
	6.3.3 Optimization through Metaheuristics

	6.4 Challenges in Fog and Edge Environments
	6.4.1 Data Heterogeneity
	6.4.2 Communication Overhead
	6.4.3 Resource Constraints

	6.5 Applications of Federated Learning in Predictive Maintenance
	6.5.1 Equipment Monitoring
	6.5.2 Fault Diagnosis
	6.5.3 Energy Optimization

	6.6 Key Research Gaps and Future Directions
	6.6.1 Adaptive Aggregation Mechanisms
	6.6.2 Enhanced Privacy Mechanisms
	6.6.3 Scalability Challenges

	6.7 Conclusion
	References

	Chapter 7 Advance Machine Learning Algorithm Aggregation Strategy for Decentralized Collaborative Models
	7.1 Introduction
	7.2 Challenges in Federated Predictive Maintenance
	7.2.1 Data Privacy and Security
	7.2.2 Heterogeneous Data Sources
	7.2.3 Communication Overhead
	7.2.4 Model Convergence

	7.3 Federated Learning Framework for Predictive Maintenance
	7.3.1 Overview
	7.3.2 Workflow
	7.3.3 Additional Considerations for Implementation

	7.4 Algorithm Aggregation Strategies in Federated Learning
	7.4.1 Federated Averaging
	7.4.2 Federated Stochastic Variance Reduced Gradient (FedSVRG)
	7.4.3 Federated Proximal (FedProx)
	7.4.4 Federated Ensemble Learning
	7.4.5 Comparison of Aggregation Strategies

	7.5 System Architecture of Federated Learning for Predictive Maintenance
	7.5.1 Data Collection and Preprocessing
	7.5.2 Local Training Mechanism
	7.5.3 Aggregation Server
	7.5.4 Federated Learning Training Cycle in Predictive Maintenance

	7.6 Performance Metrics
	7.6.1 Model Accuracy
	7.6.2 Communication Efficiency
	7.6.3 Energy Consumption

	7.7 Case Studies
	7.7.1 Manufacturing Industry: Predictive Maintenance of Computer Numerical Control (CNC) Machines Using FML-Based Anomaly Detection
	7.7.2 Smart Grid Systems: Fault Prediction in Power Transformers with Collaborative Edge-Based Learning
	7.7.3 Healthcare Equipment Maintenance: Remote Monitoring of Medical Devices to Preemptively Identify Operational Failures

	7.8 Future Research Directions
	7.8.1 Blockchain-Enabled Federated Learning
	7.8.2 Transfer Learning for FML
	7.8.3 Integration with 6G Networks

	7.9 Conclusion
	References

	Chapter 8 Artificial Intelligence and Machine Learning-Based Predictive Maintenance in Fog and Edge Computing Environment
	8.1 Introduction
	8.2 Pertinent Literature
	8.2.1 Federated Learning
	8.2.2 Predictive Maintenance
	8.2.3 Federated Learning for Predictive Maintenance

	8.3 Related Work
	8.3.1 Cloud, Edge, and Fog-Level Machine Learning
	8.3.2 Collaborative DML PM

	8.4 Conclusion
	References

	Chapter 9 Deep Reinforcement Learning-Based Task Scheduling in Edge Computing
	9.1 Introduction
	9.1.1 Introduction to Edge Computing and Task Scheduling Challenges
	9.1.2 Deep Reinforcement Learning (DRL) as a Solution
	9.1.3 Key Components of DRL-Based Task Scheduling

	9.2 Challenges in Task Scheduling for Edge Computing
	9.2.1 Resource Constraints
	9.2.2 Dynamic Workloads
	9.2.3 Latency Sensitivity
	9.2.4 Heterogeneous Infrastructure

	9.3 Reinforcement Learning for Task Scheduling
	9.3.1 Basics of Reinforcement Learning
	9.3.2 Deep Reinforcement Learning
	9.3.3 DRL Framework for Edge Task Scheduling

	9.4 DRL Algorithms for Task Scheduling
	9.4.1 Deep Q-Network
	9.4.2 Policy Gradient Methods
	9.4.3 Actor–Critic (AC) Algorithms

	9.5 System Architecture
	9.5.1 Data Collection
	9.5.2 DRL Model Training
	9.5.3 Deployment

	9.6 Performance Evaluation
	9.6.1 Metrics for Evaluating DRL-Based Scheduling
	9.6.2 Comparative Analysis

	9.7 Case Studies
	9.7.1 Smart Healthcare
	9.7.2 Autonomous Vehicles
	9.7.3 Industrial IoT and Smart Manufacturing

	9.8 Future Directions
	9.8.1 Federated Learning for DRL-Based Task Scheduling
	9.8.2 Multi-Agent Reinforcement Learning (MARL) for Task Scheduling
	9.8.3 Integration with 6G Networks for Enhanced Scheduling

	9.9 Conclusion
	References

	Chapter 10 Secure, Adaptable, and Collaborative AI:: Federated Machine Learning Enhanced with Meta-Learning and Differential Privacy
	10.1 Introduction
	10.2 Issues of Federated Learning
	10.3 Strengthening Federated Learning
	10.4 Role of Differential Privacy
	10.5 Algorithmic Impacts
	10.6 Meta Learning
	10.7 CNNS in Federated Learning
	10.8 Factors Affecting Cnns
	10.9 Conclusion
	References

	Chapter 11 EP-MPCHS:: Edge Server-Based Cloudlet Offloading Using Multi-Core and Parallel Heap Structures
	11.1 Introduction
	11.2 Literature Review
	11.2.1 Mobile Devices and Its Limitations
	11.2.2 Intelligent Offloading Mechanism
	11.2.3 Cloudlet Offloading to Edge Cloud Networks Using Deep Reinforcement Learning

	11.3 Methodology
	11.3.1 Physical Layer and Attributes
	11.3.2 Continuous Integration of Resource Allocation (CIRA)
	11.3.3 Edge Priority Placement Using Multi-Core and Parallel Heap Structures (EP-MCPHS)
	11.3.4 Testing and Evaluation Framework

	11.4 Results and Discussion
	11.4.1 Evaluation Metrics
	11.4.2 Edge Servers
	11.4.3 Simulation Results

	11.5 Conclusion
	11.5.1 Future Scope

	References

	Index

